深度学习入门(二十四)卷积神经网络——填充和步幅

深度学习入门(二十四)卷积神经网络——填充和步幅

前言

核心内容来自博客链接1博客连接2希望大家多多支持作者
本文记录用,防止遗忘

卷积神经网络——填充和步幅

课件

填充

给定(32×32)输入图像,应用(5×5)大小的卷积核
第一层得到输出大小28×28
第七层得到输出大小4×4
更大的卷积核可以更快地减小输出大小
形状从 n h × n w n_h×n_w nh×nw减小到 ( n h − k h + 1 ) × ( n w − k w + 1 ) (n_h-k_h+1)×(n_w-k_w+1) (nhkh+1)×(nwkw+1)

填充:在输入周围添加额外的行/列
在这里插入图片描述
0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0 0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0 0×0+0×1+0×2+0×3=0

填充 p h p_h ph行和 p w p_w pw列,输出形状为:
( n h − k h + p h + 1 ) × ( n w − k w + p w + 1 ) (n_h-k_h+p_h+1)\times (n_w-k_w+p_w+1) (nhkh+ph+1)×(nwkw+pw+1)
通常取 p h = k h − 1 , p w = k w − 1 p_h=k_h-1,p_w=k_w-1 ph=kh1,pw=kw1
k h k_h kh为奇数:在上下两侧填充 p h / 2 p_h/2 ph/2
k h k_h kh为偶数:在上侧填充 p h / 2 p_h/2 ph/2的上取整,在下侧填充 p h / 2 p_h/2 ph/2的下取整

步幅

填充减小的输出大小与层数线性相关
·给定输入大小224x 224,在使用5x5卷积核的情况下,需要44层将输出降低到4x4
·需要大量计算才能得到较小输出

步幅是指行/列的滑动步长
例:高度3宽度2的步幅
在这里插入图片描述
0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8 0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6 0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8\\ 0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6 0×0+0×1+1×2+2×3=80×0+6×1+0×2+0×3=6

给定高度 s h s_h sh和宽度 s w s_w sw的步幅,输出形状是
( n h − k h + p h + s h ) s h × ( n w − k w + p w + s w ) s w \frac{(n_h-k_h+p_h+s_h)}{s_h}\times \frac{(n_w-k_w+p_w+s_w)}{s_w} sh(nhkh+ph+sh)×sw(nwkw+pw+sw)
如果 p h = k h − 1 , p w = k w − 1 p_h=k_h-1,p_w=k_w-1 ph=kh1,pw=kw1
( n h + s h − 1 ) s h × ( n w + s w − 1 ) s w \frac{(n_h+s_h-1)}{s_h}\times \frac{(n_w+s_w-1)}{s_w} sh(nh+sh1)×sw(nw+sw1)
如果输入高度和宽度可以被步幅整除
( n h / s h ) × ( n w / s w ) (n_h/s_h)\times (n_w/ s_w) (nh/sh)×(nw/sw)

总结

1、填充和步幅是卷积层的超参数
2、填充在输入周围添加额外的行/列,来控制输出形状的减少量
3、步幅是每次滑动核窗口时的行/列的步长,可以成倍的减少输出形状

课本

在前面的例子中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维数为2×2。 正如我们概括的那样,假设输入形状为 n h × n w n_h\times n_w nh×nw,卷积核形状为 k h × k w k_h\times k_w kh×kw,那么输出形状将是 ( n h − k h + 1 ) × ( n w − k w + 1 ) (n_h-k_h+1) \times (n_w-k_w+1) (nhkh+1)×(nwkw+1)。 因此,卷积的输出形状取决于输入形状和卷积核的形状。

还有什么因素会影响输出的大小呢?本节我们将介绍填充(padding)和步幅(stride)。假设以下情景: 有时,在应用了连续的卷积之后,我们最终得到的输出远小于输入大小。这是由于卷积核的宽度和高度通常大于1所导致的。比如,一个240×240像素的图像,经过10层5×5的卷积后,将减少到200×200像素。如此一来,原始图像 的边界丢失了许多有用信息。而填充是解决此问题最有效的方法。 有时,我们可能希望大幅降低图像的宽度和高度。例如,如果我们发现原始的输入分辨率十分冗余。步幅则可以在这类情况下提供帮助。

1 填充

如上所述,在应用多层卷积时,我们常常丢失边缘像素。 由于我们通常使用小卷积核,因此对于任何单个卷积,我们可能只会丢失几个像素。 但随着我们应用许多连续卷积层,累积丢失的像素数就多了。 解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0)。 例如,在下图中,我们将3×3输入填充到5×5,那么它的输出就增加为4×4。阴影部分是第一个输出元素以及用于输出计算的输入和核张量元素: 0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0 0\times0+0\times1+0\times2+0\times3=0 0×0+0×1+0×2+0×3=0
在这里插入图片描述

通常,如果我们添加 p h p_h ph行填充(大约一半在顶部,一半在底部)和 p w p_w pw列填充(左侧大约一半,右侧一半),则输出形状将为
( n h − k h + p h + 1 ) × ( n w − k w + p w + 1 ) 。 (n_h-k_h+p_h+1)\times(n_w-k_w+p_w+1)。 (nhkh+ph+1)×(nwkw+pw+1)
这意味着输出的高度和宽度将分别增加 p h p_h ph p w p_w pw

在许多情况下,我们需要设置 p h = k h − 1 p_h=k_h-1 ph=kh1 p w = k w − 1 p_w=k_w-1 pw=kw1,使输入和输出具有相同的高度和宽度。 这样可以在构建网络时更容易地预测每个图层的输出形状。假设 k h k_h kh是奇数,我们将在高度的两侧填充 p h / 2 p_h/2 ph/2行。 如果 k h k_h kh是偶数,则一种可能性是在输入顶部填充 ⌈ p h / 2 ⌉ \lceil p_h/2\rceil ph/2行,在底部填充 ⌊ p h / 2 ⌋ \lfloor p_h/2\rfloor ph/2行。同理,我们填充宽度的两侧。

卷积神经网络中卷积核的高度和宽度通常为奇数,例如1、3、5或7。 选择奇数的好处是,保持空间维度的同时,我们可以在顶部和底部填充相同数量的行,在左侧和右侧填充相同数量的列。

此外,使用奇数的核大小和填充大小也提供了书写上的便利。对于任何二维张量X,当满足: 1. 卷积核的大小是奇数; 2. 所有边的填充行数和列数相同; 3. 输出与输入具有相同高度和宽度 则可以得出:输出Y[i, j]是通过以输入X[i, j]为中心,与卷积核进行互相关计算得到的。

比如,在下面的例子中,我们创建一个高度和宽度为3的二维卷积层,并在所有侧边填充1个像素。给定高度和宽度为8的输入,则输出的高度和宽度也是8。

import torch
from torch import nn


# 为了方便起见,我们定义了一个计算卷积层的函数。
# 此函数初始化卷积层权重,并对输入和输出提高和缩减相应的维数
def comp_conv2d(conv2d, X):
    # 这里的(1,1)表示批量大小和通道数都是1
    X = X.reshape((1, 1) + X.shape)
    Y = conv2d(X)
    # 省略前两个维度:批量大小和通道
    return Y.reshape(Y.shape[2:])

# 请注意,这里每边都填充了1行或1列,因此总共添加了2行或2列
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape

输出:

torch.Size([8, 8])

当卷积核的高度和宽度不同时,我们可以填充不同的高度和宽度,使输出和输入具有相同的高度和宽度。在如下示例中,我们使用高度为5,宽度为3的卷积核,高度和宽度两边的填充分别为2和1。

conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

输出:

torch.Size([8, 8])

2 步幅

在计算互相关时,卷积窗口从输入张量的左上角开始,向下、向右滑动。 在前面的例子中,我们默认每次滑动一个元素。 但是,有时候为了高效计算或是缩减采样次数,卷积窗口可以跳过中间位置,每次滑动多个元素。

我们将每次滑动元素的数量称为步幅(stride)。到目前为止,我们只使用过高度或宽度为的步幅,那么如何使用较大的步幅呢? 图6.3.2是垂直步幅为,水平步幅为的二维互相关运算。 着色部分是输出元素以及用于输出计算的输入和内核张量元素: 0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6 0\times0+6\times1+0\times2+0\times3=6 0×0+6×1+0×2+0×3=6 0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6 0\times0+6\times1+0\times2+0\times3=6 0×0+6×1+0×2+0×3=6

可以看到,为了计算输出中第一列的第二个元素和第一行的第二个元素,卷积窗口分别向下滑动三行和向右滑动两列。但是,当卷积窗口继续向右滑动两列时,没有输出,因为输入元素无法填充窗口(除非我们添加另一列填充)。
在这里插入图片描述

通常,当垂直步幅为 s h s_h sh、水平步幅为 s w s_w sw时,输出形状为
⌊ ( n h − k h + p h + s h ) / s h ⌋ × ⌊ ( n w − k w + p w + s w ) / s w ⌋ . \lfloor(n_h-k_h+p_h+s_h)/s_h\rfloor \times \lfloor(n_w-k_w+p_w+s_w)/s_w\rfloor. ⌊(nhkh+ph+sh)/sh×⌊(nwkw+pw+sw)/sw.

如果我们设置了 p h = k h − 1 p_h=k_h-1 ph=kh1 p w = k w − 1 p_w=k_w-1 pw=kw1,则输出形状将简化为 ⌊ ( n h + s h − 1 ) / s h ⌋ × ⌊ ( n w + s w − 1 ) / s w ⌋ \lfloor(n_h+s_h-1)/s_h\rfloor \times \lfloor(n_w+s_w-1)/s_w\rfloor ⌊(nh+sh1)/sh×⌊(nw+sw1)/sw。 更进一步,如果输入的高度和宽度可以被垂直和水平步幅整除,则输出形状将为 ( n h / s h ) × ( n w / s w ) (n_h/s_h) \times (n_w/s_w) (nh/sh)×(nw/sw)

下面,我们将高度和宽度的步幅设置为2,从而将输入的高度和宽度减半。

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape

输出:

torch.Size([4, 4])

接下来,看一个稍微复杂的例子。

conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape

输出:

torch.Size([2, 2])

为了简洁起见,当输入高度和宽度两侧的填充数量分别为 p h p_h ph p w p_w pw时,我们称之为填充 ( p h , p w ) (p_h, p_w) (ph,pw)。当时,填充是。同理,当高度和宽度上的步幅分别为 s h s_h sh s w s_w sw时,我们称之为步幅 ( s h , s w ) (s_h, s_w) (sh,sw)。特别地,当 s h = s w = s s_h = s_w = s sh=sw=s时,我们称步幅为 s s s。默认情况下,填充为0,步幅为1。在实践中,我们很少使用不一致的步幅或填充,也就是说,我们通常有 p h = p w p_h = p_w ph=pw s h = s w s_h = s_w sh=sw

3 小结

1、填充可以增加输出的高度和宽度。这常用来使输出与输入具有相同的高和宽。
2、步幅可以减小输出的高和宽,例如输出的高和宽仅为输入的高和宽的(是一个大于的整数)。
3、填充和步幅可用于有效地调整数据的维度

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值