【线段树】入门
相信大家在胎教期间已经学会了线段树的定义。如果还没有学明白的话,详见:
1.树的入门:https://blog.csdn.net/m0_51772480/article/details/111151296
2.树的基础算法:https://blog.csdn.net/solemntee/article/details/111051966
接下来,我们直接上例题,大家好好体会。
【例题】
敌兵布阵:
Description:
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input:
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output:
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input:
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
Sample Output:
Case 1:
6
33
59
这道题是线段树裸题,想维护数据量这么大的区间,用线段树可以实现nlogn的查询和修改。
#include<bits/stdc++.h>
using namespace std;
int tree[200050],k[200050],laz[200050]; //tree是线段树组,k是记录初始兵营人数的数组,laz是修改标记
char s[7]; //存储命令
void build(int p,int l,int r){ //建树
laz[p]=0; //清空修改标记
if(l==r){ //当区间为1时,把原始的兵营人数K赋值给叶节点
tree[p]=k[l];
return;
}
int mid=(l+r)>>1;
build(2*p,l,mid);
build(2*p+1,mid+1,r);
tree[p]=tree[p*2]+tree[2*p+1]; //递归回去把除叶节点的其他节点赋值,这里赋值方法是 父节点等于左子节点和右子节点的和
}
void pushdown(int p,int l,int r);
void update(int p,int l,int r,int x,int y,int w){ //更新函数
if(x<=l&&r<=y){ //当[l,r]被包含于[x,y]
tree[p]+=w*(r-l+1); //直接修改当前节点的值
laz[p]+=w; //修改laz标记的值
return ;
}
pushdown(p,l,r); //!!这一步很细节,自己领悟一下
int mid=(l+r)>>1;
if(x<=mid)update(2*p,l,mid,x,y,w); //进行剪枝,[l,mid]与[x,y]没有交集时,掠过这个区间
if(mid<y)update(2*p+1,mid+1,r,x,y,w); //进行剪枝
tree[p]=tree[2*p]+tree[2*p+1];
}
void pushdown(int p,int l,int r){ //把laz标记推下去,保证当前的tree数组的值是 修改后的真值
int mid=(l+r)>>1;
laz[2*p]+=laz[p]; //将laz标记传到左子节点的修改标记上
laz[2*p+1]+=laz[p]; //将laz标记传到右子节点的修改标记上
tree[2*p]+=laz[p]*(mid-l+1); //修改左子节点的当前的变动值,保证它为真
tree[2*p+1]+=laz[p]*(r-mid); //同理修改右子节点
laz[p]=0; //清空当前的修改标记
return;
}
int query(int p,int l,int r,int x,int y){ //执行查询工作
if(x<=l&&r<=y){ //当[l,r]被包含于[x,y]区间中时,直接返回节点的值
return tree[p];
}
pushdown(p,l,r); //把当前的标记推下去,方便之后的查询工作;
int ans=0,mid=(l+r)>>1;
if(x<=mid)ans+=query(2*p,l,mid,x,y); //如果有交集的话,继续查询,返回区间和
if(mid<y)ans+=query(2*p+1,mid+1,r,x,y); //同理
return ans;
}
int main()
{
int t,n,i,j,a,b;
scanf("%d",&t);
for(j=1;j<=t;j++){ //记录Case数
scanf("%d",&n);
for(i=1;i<=n;i++)scanf("%d",&k[i]);
build(1,1,n);
printf("Case %d:\n",j);
scanf("%s",s);
while(s[0]!='E'){
scanf("%d %d",&a,&b);
if(s[0]=='A'){
update(1,1,n,a,a,b);
}else if(s[0]=='S'){
update(1,1,n,a,a,-b);
}else{
int ans=query(1,1,n,a,b);
printf("%d\n",ans);
}
scanf("%s",s);
}
}
return 0;
}
【温馨提示】(经验总结)
线段树的数组要开4倍,才能保证不访问非法空间;
l和r代表的是,当前的p节点管控的区间范围;
注意在建树的时候,给laz数组初始化;
注意判断区间是否被包含的写法, 推荐 if(x<=l&&r<=y)。
在此感谢lwhgg教我的线段树,讲的很好,一听就懂,建议加入九年制义务教育。
感谢wzgg 树的入门 的博客,感谢lwhgg 树的基础算法的博客。
期末挂科之后怒学树状数组,想着来这里补个树状数组的做法
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
ll d[500005],n;
char s[10];
ll lowbit(ll i){ //实现区域段的跳跃
return i&(-i);
}
void add(ll i,ll k){ //单点修改,实现相关区间的修改
while(i<=n){
d[i]+=k;
i+=lowbit(i);
}
}
ll query(ll x,ll y){ //询问区间和,利用前缀和的方法
ll ans1=0,ans2=0;
while(y>0){
ans2+=d[y];
y-=lowbit(y);
}
while(x>0){
ans1+=d[x];
x-=lowbit(x);
}
return ans2-ans1;
}
int main()
{
int t;
ll i,j,a,b,cnt=1;
scanf("%d",&t);
while(t--){
memset(d,0,sizeof(d));
printf("Case %lld:\n",cnt++);
scanf("%lld",&n);
for(i=1;i<=n;i++){
ll c;
scanf("%lld",&c);
add(i,c);
}
scanf("%s",s);
while(s[0]!='E'){
scanf("%lld %lld",&a,&b);
if(s[0]=='Q'){
printf("%lld\n",query(a-1,b));
}else if(s[0]=='A'){
add(a,b);
}else add(a,-b);
scanf("%s",s);
}
}
}