2021-7-14 个人赛 补题

这篇博客讲述了如何解决一个计算机算法问题,即通过观察五个序列还原最初一头牛的隐藏序列。由于每头牛最多移动一次,博主利用排序和自定义比较函数的方法,在O(n log n)的时间复杂度内解决了问题。尽管在比赛中花费了一个半小时,但最终理解了思路:通过比较序列中牛的相对位置关系来确定它们的原始顺序。
摘要由CSDN通过智能技术生成

D:Cow Photography II

题意:
n头牛(n<=20000),有一个隐藏序列。

题目提供五个序列,都是从隐藏序列变化过来,每次可能有0头或多头牛会移动,但在五个序列中,每头牛最多只能移动一次,要求还原最初的隐藏序列。

思路:
因为每头牛最多只会移动一次,所以任意两头牛的先后次序最多只会改变两次,所以在五张照片中,序号在前面多的牛,排在前面。
根据复杂度我们可以通过sort+重写比较函数来n logn地还原隐藏序列。

这道题在比赛中做了好久,一个半小时都没做出来。想到了依靠先后次序关系,想着拓扑序建图的,可惜复杂度不够,就没想到这个cmp的方法。
遇到过好几次了,可恶、

int n,m;
int s[6][20060];
int p[20060];
vector<int>v;
int find(int x){
	return lower_bound(v.begin(),v.end(),x)-v.begin()+1;
}
int id[20060];
bool cmp(int x,int y){
	int cnt=0;
	for(int i=1;i<=5;i++)
	{
		if(s[i][x]<s[i][y])cnt++;
	}
	return cnt>=3;
}
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		scanf("%d",&p[i]);
		v.push_back(p[i]);
		id[i]=i;
	}
	sort(v.begin(),v.end());
	for(int i=1;i<=n;i++){
		s[1][find(p[i])]=i;
	}
	for(int i=2;i<=5;i++){
		for(int j=1;j<=n;j++){
			int a;
			scanf("%d",&a);
			s[i][find(a)]=j;
		}
	}
	sort(id+1,id+1+n,cmp);
	for(int i=1;i<=n;i++){
		printf("%d\n",v[id[i]-1]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值