AC 自动机
AC自动机 本人也只做了几道模板题,不太会应用 orz
前置知识:
KMP、trie树
AC自动机适用于多模式串匹配问题,如问几个模式串在文本串分别在文本中出现的次数;
首先,多字符串我们建立trie树来减少时间、空间复杂度。
其次我们在匹配的过程中,为了达到高效,我们需要再建立一个失配指针,指向深度最深的和当前节点有公共后缀的节点。
当我们匹配文本串的时候,我们优先遍历存在的节点,如果没有需要的节点了,我们就跳fail指针继续下去。
以上就是普通的,比较简单的AC自动机了。
接下来我们来讲重点:fail 树
我们可以很容易的发现,每个节点都有一条从当前节点出发的fail指针,并且所有fail边都是从深度深的指向深度浅的,意味着不会产生环。那么如果我们把这些边反向,就形成了一张fail树啦。
fail树具有十分优美的性质:当前节点的所有儿子 在原trie树中从根到节点的路径形成的单词 都以当前节点在原trie树上形成的单词为后缀。(这个需要自行画图理解)
那么!我们只需要用数组记录一下模式串的结尾的节点编号,然后在用文本串匹配的时候直接把当前节点的次数++;
那么每个模式串出现的次数 即为它结尾的节点以及它fail子树的访问次数的和(这个我们只需要dfs就能实现)。
建fail树:
在建立失配指针之后,将所有的边都反向存图
void getfail(){
rep(i,0,25)trie[0].son[i]=1;
trie[1].fail=0;q.push(1);
while(!q.empty()){
int u=q.front();q.pop();
rep(i,0,25){
int v=trie[u].son[i],x=trie[u].fail;
if(!v)trie[u].son[i]=trie[x].son[i];
else {
trie[v].fail=trie[x].son[i];
q.push(v);
}
}
}
for(int i=0;i<=cnt;i++)v[trie[i].fail].push_back(i);
}
匹配加siz:
相比于之前的暴力跳fail边,这大大减少了时间复杂度
int siz[1000050];
void query(char *s){
ll u=1,len=strlen(s);
rep(i,0,len-1){
int v=s[i]-'a';
ll k=trie[u].son[v];
while(!k){
k=trie[u].fail;
}
siz[k]++;
u=k;
}
}
dfs求答案:
将每个点的子树的和求出来
void dfs(int x,int pre){
for(int i=0;i<v[x].size();i++){
if(x!=pre)dfs(v[x][i],x);
siz[x]+=siz[v[x][i]];
}
}
int main(){
n=qread();
rep(i,1,n){
scanf("%s",s);
insert(s,i);
}
getfail();
scanf("%s",s);
query(s);
dfs(0,-1);
rep(i,1,n)printf("%lld\n",siz[mp[i]]);
return 0;
}