图
1.各种图的定义
n阶图:有n个顶点的图
零图:没有边的图
平凡图:1阶零图称作平凡图
简单图:既不含平行边也不含环的图
多重图:含有平行边的图
完全图:图G中任意一个顶点都与其余n-1个顶点关联
正则图:各个顶点的度数为k,即k—正则图
圈图:所有顶点连成一个环
轮图:在圈图中放一个点,与其余每个点相关联
方体图:由01构成
子图:从原图中任取一部分
补图:G的补图和G构成正则图
2.图中其他的定义
孤立点:没有边关联的顶点
环:两个端点重合的边称环
出度:出去次数
入度:进来次数
度:度=入度+出度
3.图的矩阵表示
A.关联矩阵
a1.无向图的关联矩阵
定义:顶点与边的关联次数
矩阵元素:
0:vi与ej不关联
1:vi与ej关联一次
2:ej是以vi为顶点的环
矩阵表示
e1 e2 e3 e4 e5 e6
v1 1 1 1 0 0 0
v2 0 1 1 0 1 0
v3 0 0 0 1 1 0
v4 1 0 0 1 0 2
a2.有向无环图的关联矩阵
定义:顶点与边的出度入度
矩阵元素:
1:vi为ej的始点
0:vi为ej不关联
-1:vi为ej的终点
矩阵表示
e1 e2 e3 e4 e5 e6 e7
v1 -1 1 0 0 0 -1 1
v2 0 -1 1 0 0 0 0
v3 0 0 -1 -1 -1 1 -1
v4 1 0 0 1 1 0 0
B.邻接矩阵(有向图)
定义:顶点到顶点边的条数
行元素之和:vi的出度
列元素之和:vi的入度
矩阵表示
v1 v2 v3 v4
v1 1 2 1 0
v2 0 0 1 0
v3 0 0 0 1
v4 0 0 1 0
C.可达矩阵(有向图、无向图)
定义:顶点到顶点是否可达
矩阵元素:
1:vi->vj可达
0:不可达
注意:自身一定可达
矩阵表示
v1 v2 v3 v4
v1 1 1 1 1
v2 0 1 1 1
v3 0 0 1 1
v4 0 0 1 1
4.几种特殊图
A.二部图
定义:V1中的顶点与V2中的任意一顶点仅有一条边关联,V1,V2互补顶点集
B.欧拉图(连通图——有向/无向)
欧拉图:含有欧拉回路的图
欧拉通路:G中经过每条边一次并且仅一次的通路
欧拉回路:G中经过每条边一次并且仅一次的回路
定理一:无向图G有欧拉回路——当且仅当G是连通图且无奇度顶点.
G有欧拉通路但无欧拉回路——当且仅当G是连通图且恰好有两个奇度顶点,并且每条欧拉通路以这两个点为端点。
定理二:有向图D有欧拉回路——当且仅当G是连通图且所有顶点出度等于入度。
D有欧拉通路但无欧拉回路,当且仅当D是连通的,且除了两个例外的顶点外,
其余顶点的入度均等于出度,这两个例外的顶点中,一个顶点的入度比出度大1,另一个顶点的入度比出度小1。
C.哈密顿图(无向的或有向的)
哈密顿图:存在哈密顿回路,则称G为哈密顿图.
哈密顿通路:G中经过每个顶点一次且仅一次的通路。
哈密顿回路:G中经过每个顶点一次且仅一次的回路。
充分条件
d(u)=u的度数
设G是n(n≥3)阶无向简单图,若对G中每一对不相邻的顶点u,v,均有
d(u)+d(v)≥n-1
则G中存在哈密顿通路。
若d(u)+d(v)≥n
则G中存在哈密顿回路,即G为哈密顿图。
D.平面图(无向图)
定义:
图G如果能以这样的方式画在平面上:除顶点处外没有边交叉出现,则称G为平面图.画出的没有边交叉出现的图称为G的平面嵌入或平面表示;
无平面嵌入的图称为非平面图
定义:设G为一个简单平面图.如果在G的任意不相邻的顶点之间再加一条边所得图为非平面图,则称G为极大平面图。