图(完结,部分概念省略)

1.各种图的定义

n阶图:有n个顶点的图
零图:没有边的图
平凡图:1阶零图称作平凡图
简单图:既不含平行边也不含环的图
多重图:含有平行边的图
完全图:图G中任意一个顶点都与其余n-1个顶点关联
正则图:各个顶点的度数为k,即k—正则图
圈图:所有顶点连成一个环
轮图:在圈图中放一个点,与其余每个点相关联
方体图:由01构成
子图:从原图中任取一部分
补图:G的补图和G构成正则图
2.图中其他的定义
孤立点:没有边关联的顶点
环:两个端点重合的边称环

出度:出去次数
入度:进来次数
度:度=入度+出度
3.图的矩阵表示

A.关联矩阵

a1.无向图的关联矩阵
定义:顶点与边的关联次数
矩阵元素:
0:vi与ej不关联
1:vi与ej关联一次
2:ej是以vi为顶点的环
在这里插入图片描述

矩阵表示
	  e1 e2 e3 e4 e5 e6	
v1    1  1  1  0  0  0
v2    0  1  1  0  1  0
v3    0  0  0  1  1  0
v4    1  0  0  1  0  2 

a2.有向无环图的关联矩阵
定义:顶点与边的出度入度
矩阵元素:
1:vi为ej的始点
0:vi为ej不关联
-1:vi为ej的终点
在这里插入图片描述

矩阵表示
	e1  e2 e3 e4 e5 e6  e7
v1	-1  1  0  0  0  -1  1
v2	0  -1  1  0  0   0  0
v3	0   0 -1 -1 -1   1 -1
v4	1   0  0  1  1   0  0

B.邻接矩阵(有向图)

定义:顶点到顶点边的条数
行元素之和:vi的出度
列元素之和:vi的入度
在这里插入图片描述

矩阵表示
	v1  v2  v3  v4
v1  1   2   1   0
v2  0   0   1   0
v3  0   0   0   1
v4  0   0   1   0

C.可达矩阵(有向图、无向图)

定义:顶点到顶点是否可达
矩阵元素:
1:vi->vj可达
0:不可达
注意:自身一定可达
在这里插入图片描述

矩阵表示
   v1 v2 v3 v4
v1  1  1  1  1
v2  0  1  1  1
v3  0  0  1  1
v4	0  0  1  1

4.几种特殊图

A.二部图

定义:V1中的顶点与V2中的任意一顶点仅有一条边关联,V1,V2互补顶点集
在这里插入图片描述

B.欧拉图(连通图——有向/无向)

欧拉图:含有欧拉回路的图
欧拉通路:G中经过每条边一次并且仅一次的通路
欧拉回路:G中经过每条边一次并且仅一次的回路


定理一:无向图G有欧拉回路——当且仅当G是连通图且无奇度顶点.
G有欧拉通路但无欧拉回路——当且仅当G是连通图且恰好有两个奇度顶点,并且每条欧拉通路以这两个点为端点。


定理二:有向图D有欧拉回路——当且仅当G是连通图且所有顶点出度等于入度。
D有欧拉通路但无欧拉回路,当且仅当D是连通的,且除了两个例外的顶点外,
其余顶点的入度均等于出度,这两个例外的顶点中,一个顶点的入度比出度大1,另一个顶点的入度比出度小1

C.哈密顿图(无向的或有向的)

哈密顿图:存在哈密顿回路,则称G为哈密顿图.
哈密顿通路:G中经过每个顶点一次且仅一次的通路。
哈密顿回路:G中经过每个顶点一次且仅一次的回路。

充分条件
d(u)=u的度数
设G是n(n≥3)阶无向简单图,若对G中每一对不相邻的顶点u,v,均有
d(u)+d(v)≥n-1
则G中存在哈密顿通路。

若d(u)+d(v)≥n
则G中存在哈密顿回路,即G为哈密顿图。

D.平面图(无向图)

定义:
图G如果能以这样的方式画在平面上:除顶点处外没有边交叉出现,则称G为平面图.画出的没有边交叉出现的图称为G的平面嵌入或平面表示;
无平面嵌入的图称为非平面图

定义:设G为一个简单平面图.如果在G的任意不相邻的顶点之间再加一条边所得图为非平面图,则称G为极大平面图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿斯卡码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值