蓝桥杯入门训练----- Fibonacci数列
试题 基础练习 Fibonacci数列
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。
当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。
输入格式
输入包含一个整数n。
输出格式
输出一行,包含一个整数,表示Fn除以10007的余数。
说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单。
样例输入
10
样例输出
55
样例输入
22
样例输出
7704
数据规模与约定
1 <= n <= 1,000,000。
基本思想:
在本题中,答案是要求Fn除以10007的余数,如果先计算出Fn的准确值,再将计算的结果除以10007取余数,则会因为递归而导致超时。直接计算余数往往比先算出原数再取余简单。
基本数学原理就是( a+b)%p=(a%p+b%p)%p
程序代码:
#include<stdio.h>
#include<iostream>
using namespace std;
int fibonacci(int n)
{
int a[3]={1,1,0};
if (n <= 2)return a[n-1];
while (n > 2)
{
a[2] = a[0]%10007 + a[1]%10007;
a[0] = a[1];
a[1] = a[2];
n--;
}
return a[1];
}
int main()
{
int n;
cin >> n;
cout<< fibonacci(n) % 10007 << endl;
return 0;
}