题目描述
一个 n n n 个元素的整数数组,如果数组两个连续元素之间差的绝对值包括了 [ 1 , n − 1 ] [1,n-1] [1,n−1] 之间的所有整数,则称之符合“欢乐的跳”,如数组 { 1 , 4 , 2 , 3 } \{1,4,2,3\} {1,4,2,3} 符合“欢乐的跳”,因为差的绝对值分别为: 3 , 2 , 1 3,2,1 3,2,1。
给定一个数组,你的任务是判断该数组是否符合“欢乐的跳”。
输入格式
每组测试数据第一行以一个整数 n ( 1 ≤ n ≤ 1000 ) n(1 \le n \le 1000) n(1≤n≤1000) 开始,接下来 n n n 个空格隔开的在 [ − 1 0 8 , 1 0 8 ] [-10^8,10^8] [−108,108] 之间的整数。
输出格式
对于每组测试数据,输出一行若该数组符合“欢乐的跳”则输出 Jolly
,否则输出 Not jolly
。
样例 #1
样例输入 #1
4 1 4 2 3
样例输出 #1
Jolly
样例 #2
样例输入 #2
5 1 4 2 -1 6
样例输出 #2
Not jolly
提示
1 ≤ n ≤ 1000 1 \le n \le 1000 1≤n≤1000
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
#define pai 3.141593
int main()
{
int n,b,flag=0;
scanf("%d",&n);
int a[n],c[n-1];
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
for(int i=0;i<n-1;i++){
b=(a[i+1]-a[i+2]>0)?a[i+1]-a[i+2]:a[i+2]-a[i+1];
if(b>=1&&b<=n-1){
c[i]=b;
}
}
//以下为冒泡排序算法
for(int i=0;i<n-2;i++){//n-1个数需要比较n-2轮
for(int j=0;j<n-2-i;j++){//每一轮比较的次数递减
if(c[j]>c[j+1])
{
int temp=c[j];
c[j]=c[j+1];
c[j+1]=temp;
}
}
}
for(int i=0;i<n-1;i++){
if(c[i]==i+1){
flag=1;
}else
{
flag=0;
break;
}
}
if(flag==0){
printf("Not jolly");
}else
{
printf("Jolly");
}
return 0;
}
本题主要是考察排序算法,必须包括[1,n-1]所有的数字,
怎样判断呢?采用排序从小到大(从大到小)都可以,如果有一个不符合条件的,直接break跳出判断输出。