题目
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请
你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例
- 示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
- 示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
- 示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
提示
- 3 <= nums.length <= 3000
- - 1 0 5 10^5 105 <= nums[i] <= 1 0 5 10^5 105
思路及算法代码
思路
本题的难点在于如何去除重复解。
- 特判,对于数组长度 n,如果数组为 null 或者数组长度小于 3,返回 []。
- 对数组进行排序。
- 遍历排序后数组:
- 若 nums[i]>0:因为已经排序好,所以后面不可能有三个数加和等于 0,直接返回结果。
- 对于重复元素:跳过,避免出现重复解
- 令左指针 L=i+1,右指针 R=n−1,当 L<R 时,执行循环:
- 当 nums[i]+nums[L]+nums[R]==0,执行循环,判断左界和右界是否和下一位置重复,去除重复解。并同时将 L,R 移到下一位置,寻找新的解
- 若和大于 0,说明 nums[R] 太大,R 左移
- 若和小于 0,说明 nums[L] 太小,L 右移
代码
from typing import List
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
# 获取列表长度
n = len(nums)
res = []
# 如果列表为空或长度小于3,直接返回空列表
if not nums or n < 3:
return []
# 对列表进行排序
nums.sort()
# 遍历列表
for i in range(n):
# 如果当前元素大于0,因为列表已排序,后面不可能有三个数之和为0
if nums[i] > 0:
return res
# 跳过重复的数字,避免重复计算
if i > 0 and nums[i] == nums[i - 1]:
continue
# 定义左右指针
L = i + 1
R = n - 1
# 双指针遍历
while L < R:
# 如果三个数之和为0,加入结果列表
if nums[i] + nums[L] + nums[R] == 0:
res.append([nums[i], nums[L], nums[R]])
# 跳过重复的数字
while L < R and nums[L] == nums[L + 1]:
L += 1
while L < R and nums[R] == nums[R - 1]:
R -= 1
L += 1
R -= 1
# 如果三个数之和大于0,右指针左移
elif nums[i] + nums[L] + nums[R] > 0:
R -= 1
# 如果三个数之和小于0,左指针右移
else:
L += 1
# 返回结果列表
return res
复杂度分析
- 时间复杂度:O( n 2 n^2 n2),数组排序 O(NlogN),遍历数组 O(n),双指针遍历 O(n),总体 O(NlogN)+O( n 2 n^2 n2)
- 空间复杂度:O(1)