目录
一. opencv简介
OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。 [1]
它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
二 . 下载安装opencv
1. 下载opencv
从官网下载opencv,由于是在Linux下使用,下载source版本
下载好之后把文件复制到home目录下或者在home里新建一个文件夹进行存放
我的复制在home目录下,开始解压
解压命令:
unzip opecv-4.5.4.zip
解压后查看:
可以看到已经有了文件夹,解压成功!
2. 使用cmake安装opencv
接下来就是下载opencv所需要的依赖库和cmake,因为下载之后得到的配置文件无法直接使用,需要使用cmake进行编译
进入到解压的文件包中:
cd opencv-4.5.4
进入管理员权限:
sudo su
再更新一下:
sudo apt-get update
3.安装cmake
sudo apt-get cmake
报错:
解决方法:删除锁定文件
sudo rm /var/lib/dpkg/lock-frontend
sudo rm /var/lib/dpkg/lock
再次执行:
4. 安装依赖库
sudo apt-get install build-essent
创建build文件夹,再进入文件夹
mkdir build
cd build
使用cmake编译参数
3.使用make创建编译并安装
sudo make
编译过程较长,耐心等待,建议多线程进行,速度会快很多
编译完成:
安装:sudo make install
4. 配置环境
修改 opencv.conf 文件,打开后的文件是空的,添加 opencv 库的安装路径:/usr/local/lib
sudo gedit /etc/ld.so.conf.d/opencv.conf
输入路径并保存:
有警告可以忽略:
更新系统共享链接库
sudo ldconfig
配置bush,修改bash.bshrc
sudo gedit /etc/bash.bashrc
在文件末尾加入:
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH
然后执行如下命令使得配置生效:
source /etc/bash.bashrc
更新一下:
sudo updatedb
查看opencv的版本信息:
pkg-config --modversion opencv
安装成功
三. 使用示例图片
1. 新建文件夹存代码
mkdir code
cd code
2. 新建test1.cpp
vim test1.cpp
test1.cpp代码:
#include <opencv2/highgui.hpp>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
CvPoint center;
double scale = -3;
IplImage* image = cvLoadImage("lena.jpg");
argc == 2? cvLoadImage(argv[1]) : 0;
cvShowImage("Image", image);
if (!image) return -1; center = cvPoint(image->width / 2, image->height / 2);
for (int i = 0;i<image->height;i++)
for (int j = 0;j<image->width;j++) {
double dx = (double)(j - center.x) / center.x;
double dy = (double)(i - center.y) / center.y;
double weight = exp((dx*dx + dy*dy)*scale);
uchar* ptr = &CV_IMAGE_ELEM(image, uchar, i, j * 3);
ptr[0] = cvRound(ptr[0] * weight);
ptr[1] = cvRound(ptr[1] * weight);
ptr[2] = cvRound(ptr[2] * weight);
}
Mat src;Mat dst;
src = cvarrToMat(image);
cv::imwrite("test.png", src);
cvNamedWindow("test",1); imshow("test", src);
cvWaitKey();
return 0;
}
保存退出
3. 将找到的图片复制到code目录下
4. 编译并运行test1.cpp文件
编译:
g++ test1.cpp -o test1 `pkg-config --cflags --libs opencv`
运行:./test1
文件夹里还多了test.png:
四. 使用示例——视频
1. 获取摄像头权限
windows下打开服务:
找到 VMware USB Arbitration S… 服务,确保启动成功
点击 “ 虚拟机 ” ,然后点击 “ 设置(S)… ”
选择 “ 虚拟机 ” ,再选择 “ 可移动设备 ” ,再选择 “ Quanta USB2.0 VGA UVC WebCam ” ,最后点击 “ 连接 ” ,再弹出的窗口内点击 “ 确定 ”
2. 播放视频
创建一个test2.cpp:
#include <opencv2/opencv.hpp>
using namespace cv;
int main()
{
//从摄像头读取视频
VideoCapture capture("zhang.mp4");
//循环显示每一帧
while(1){
Mat frame;//定义一个Mat变量,用于存储每一帧的图像
capture >> frame;//读取当前帧
if(frame.empty())//播放完毕,退出
break;
imshow("读取视频帧",frame);//显示当前帧
waitKey(30);//掩饰30ms
}
system("pause");
return 0;
}
编译:
g++ test2.cpp -o test2 `pkg-config --cflags --libs opencv`
查看:
已经生成了test2可执行文件
运行:
./test2
3.录制视频
创建一个test3.cpp
代码如下:
//打开电脑摄像头,空格控制视频录制,ESC退出并保存视频RecordVideo.avi
#include<iostream>
#include <opencv2/opencv.hpp>
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
using namespace cv;
using namespace std;
int main()
{
//打开电脑摄像头
VideoCapture cap(0);
if (!cap.isOpened())
{
cout << "error" << endl;
waitKey(0);
return 0;
}
//获得cap的分辨率
int w = static_cast<int>(cap.get(CV_CAP_PROP_FRAME_WIDTH));
int h = static_cast<int>(cap.get(CV_CAP_PROP_FRAME_HEIGHT));
Size videoSize(w, h);
VideoWriter writer("RecordVideo.avi", CV_FOURCC('M', 'J', 'P', 'G'), 25, videoSize);
Mat frame;
int key;//记录键盘按键
char startOrStop = 1;//0 开始录制视频; 1 结束录制视频
char flag = 0;//正在录制标志 0-不在录制; 1-正在录制
while (1)
{
cap >> frame;
key = waitKey(100);
if (key == 32)//按下空格开始录制、暂停录制 可以来回切换
{
startOrStop = 1 - startOrStop;
if (startOrStop == 0)
{
flag = 1;
}
}
if (key == 27)//按下ESC退出整个程序,保存视频文件到磁盘
{
break;
}
if (startOrStop == 0 && flag==1)
{
writer << frame;
cout << "recording" << endl;
}
else if (startOrStop == 1)
{
flag = 0;
cout << "end recording" << endl;
}
imshow("picture", frame);
}
cap.release();
writer.release();
destroyAllWindows();
return 0;
}
编译:
g++ test3.cpp -o test3 `pkg-config --cflags --libs opencv`
运行:
./test3
查看code文件里的内容:
五. 总结
这次实验让我更清楚了ubuntu虚拟机的apt-get等安装命令,也更加了解安装、编译、运行过程中各种可能出现的问题和解决方案。安装opencv没有什么太大的问题,但是再过程中环境配置总是出现各种问题,依赖包下载出现的问题最大,因此我还需要更加努力学习,对于opencv学习更深入。