自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 资源 (1)
  • 收藏
  • 关注

原创 NeRF在农业领域的应用-------------(1)

在精准农业中,准确收集植物表型对于优化可持续农业实践至关重要。在受控实验室环境中进行的传统表型分析虽然很有价值,但对于理解植物在真实世界条件下的生长不足。新兴的传感器和数字技术为直接在农场环境中对植物进行表型分析提供了一种很有前景的方法。本研究使用神经辐射场 (NeRF) 研究了一种基于学习的表型分析方法,以实现对温室环境中辣椒植物的精确原位表型分析。为了定量评估该方法的性能,实施了传统的基于 3D 扫描数据的点云配准方法进行比较。

2024-11-14 14:13:31 594

原创 人群计数制作私有数据集教程-----自用

2.进入cclabeler-master\users\,会看到test.json文件,打开json文件,password在登录浏览器界面时要用到,data存放你待标注的图片名称(可以自己写个python脚本生成字符串),不用后缀,done和half保持空的状态。txt转.mat文件,这里就遇到问题了,直接用这个博客转的mat文件跟ShanghaiTech数据集是不太一样的,但因为是要往后继续生成的,它最后要生成density map,解决方案:关掉酷狗音乐的进程,因为它的串口也是:8000;

2024-11-12 11:00:54 748

原创 GAMES101------学习笔记---自用03--Shading(着色)

那么我们定义一个系数kd。如果把这个数值表示成向量,表示一个有三通道的RGB颜色的值,每个通道都是从0到1,那么在一个点上就可以定义这个点上的颜色。一个点光源在某一时刻,向四面八方辐射的能量集中在这样一个球壳上,某一时刻距离为1的球壳上,某一点的光的强度为I,随着时间的推移,这个球壳会向外扩展,表面积会越来越大,那么分布到每一个点上的光的强度就会减小。一个着色点在物体表面,这个表面可以是曲面,但是我们认为在一个局部非常小的范围内,永远是一个平面,那么我们就可以定义平面法线,即为垂直于这个平面的方向(

2024-11-06 17:13:52 822

原创 MathType在Word中的安装与配置记录

再点击“信任中心”——“信任中心设置”——“受信任位置”,我们发现,这个受信任的文件夹,并不是之前mathtype加载项添加到的文件夹,所以word并没有信任mathtype的加载项,这是导致mathtype选项为灰色的主要原因。word中会出现mathtype的选项,但是这时mathtype中的选项是虚的,无法点击,如下图所示。根据这个加载项的位置,找到后缀为.dotm的文件,将其复制到上图受信任位置中,受信任的加载项的文件夹。选择受信任文件夹下的dotm文件,点击确定。

2024-11-04 18:19:10 753

原创 GAMES101------学习笔记---自用02--Antialiasing (反走样)

(a)是某个连续的函数,假设他通过傅里叶变换反应在某个频域上是(b),假如要采样这个函数,就要在这个函数上乘以另外一个只在固定位置上有值的函数(冲激函数,如(c)),用(a)乘以(c),得到的就是(a)函数上的一系列连续的点(e)因此我们必须用相对高的采样频率,才能还原出原来的函数。从f(x)=A/2(最低的频率)开始,每次不断地向式子中加入一些正余弦函数(函数的频率不断增高),然后画出新的图像,会发现当加入的项越多时,整个f(x)函数的图像越接近于原始的那个像城墙一样(一个个凸起的矩形)的函数。

2024-10-26 14:07:52 828

原创 深度学习中常用的基本函数总结(一)

这个操作的作用是将输入张量x重新排列成一个新的形状,其中x.size(0)是张量的第一个维度(通常是批量维度),而-1表示让 PyTorch 自动计算第二个维度的大小,以使张量的总元素数量保持不变。例如,假设x的形状为(32, 3, 64, 64) ,表示一个批量大小为 32 的彩色图像,通道数为 3,每个图像的尺寸为 64x64像素。然后, x.view(x.size(0), -1)的操作将x重新排列成一个二维张量,其中第一个维度是批量大小, 第二个维度是自动计算得出的,以保持张量的总元素数量不变。

2024-10-16 18:09:10 1039

原创 LeetCode---刷题---罗马数字转整数与删除有序数组中的重复项

基本思路:先遍历整个字符串–>查找当前字符串对应的整数值–>If判断当前字符串对应的整数值是否小于下一个字符串对应的整数值–>为Ture则下一个字符串对应的整数值减去当前字符串对应的整数值–>为否则下一个字符串对应的整数值加上当前字符串对应的整数值。解题思路:初始化k=1,表示要保留数组的长度以及下一个元素要填入的下标–>从下标1处开始遍历整个数组–>如果当前元素与前一个相等,则不保留,如果当前元素与前一个元素不等,保留之后,填入k中,然后加1。通常情况下,罗马数字中小的数字在大的数字的右边。

2024-10-16 14:50:31 258

原创 LeetCode---刷题---两数之和与求无重复字符的最长子串

那么当我们选择第 k+1 个字符作为起始位置时,首先从 k+1 到 rk的字符显然是不重复的,并且由于少了原本的第 k 个字符,我们可以尝试继续增大 rk,直到右侧出现了重复字符为止。在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。我们不妨以示例一中的字符串 abcabcbb 为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。

2024-10-15 11:27:11 878

原创 GAMES101---学习笔记--自用01--Rasterization 1 (Triangles)

由于人眼有视觉暂留现象,而画面的切换速度又很快,因此为了让成像更快一点,可以隔一行画一条线,比如在当前时刻,只画奇数行的线,在下一时刻(或者下一张图)的时候,只画偶数行的线。判断一个像素和三角形的位置关系,确切说是像素的中心点与三角形的位置关系。通俗的解释是,给你一个连续函数,在不同的地方(x),我去问:这个函数的值(y)是多少。液晶通过自己的不同排布影响光的极化(光的偏振方向),通过液晶的扭曲,将光的振动方向渐渐调整过来。2、三角形内部一定是平面的,三角形的内部和外部定义的非常明确。

2024-10-14 18:02:53 912

原创 LeetCode刷题-----哈希表

哈希表通过键 key 和映射函数 Hash(key) 计算出对应的值 value,把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做哈希函数(散列函数),存放记录的数组叫做哈希表(散列表)。例如整除1000求余。哈希表(Hash Table):也叫做散列表。是根据关键码值(Key Value)直接进行访问的数据结构。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。整数,并返回它们的数组下标。,请你在该数组中找出。

2024-10-14 11:36:31 135

原创 GAMES101---学习笔记--自用--3D transformations

相机的位置->往哪看->向上方向。

2024-10-14 10:56:07 991

原创 三维重建----图像特征点检测与匹配

特征点的定义:检测子(给一副图像找到特征点的位置)+描述子(特征向量,用于特征匹配)

2024-10-13 19:52:03 1138

转载 Linux下CMake简明教程---自己学习使用

CMake是开源、跨平台的构建工具,可以让我们通过编写简单的配置文件去生成本地的,这个配置文件是独立于运行平台和编译器的,这样就不用亲自去编写Makefile了,而且配置文件可以直接拿到其它平台上使用,无需修改,非常方便。本文主要讲述在Linux下如何使用CMake来编译我们的程序。

2024-10-12 10:04:55 322

原创 Mobile-Seed: Joint Semantic Segmentation and Boundary Detection for Mobile Robots--图像语义和边界双分割

在本节中,我们将介绍用于联合语义分割和边界检测学习的轻量级Mobile-Seed。如图3所示,Mobile-Seed包含一个用于语义分割和边界检测的双流编码器,然后是一个用于特征融合的主动融合解码器(AFD)。每个分支的输出都用相应的基本事实进行监督。此外,引入正则化损失以互补的方式直接双任务学习。A.架构概述由于目标是同时学习语义和边界信息,我们提出了一个双流编码器来从输入图像中捕获相应的特征。首先,使用由两个MobileNetV2块组成的简单共享干模块[31]嵌入原始图像I∈R3。

2024-09-13 16:43:35 1344

原创 Linux虚拟机上编译Opencv4.9.0详细教程记录

如果不装依赖,编译opencv和项目都不会报错,但一运行就报错!于是你又要返回来先装依赖,然后重新编译opencv,相当于之前编译那么长时间都是白搭。点击完成后会出现如下弹框,这里可以选择关闭,也可以选择重新载入。然后打开解压后的opencv-4.9.0文件夹,新建一个。这里可以自己选择一个中国的服务器,也可以点击右上角的。然后cd到这个文件夹下,新建opencv.pc文件;注:一定要先安装依赖以后再去编译,, unzip,若已安装,此步跳过。软件,点击右侧的小三角形。选择好以后,点击右下角的。

2024-09-05 22:23:47 1088

原创 COLMAP与MVSNet

首先进行特征提取,点击“processing”中的“Feature Extraction”, 弹出选择窗体,这里面,只需要将相机模型选择为“Pinhole”模型即可,其他参数默认可以不变。当前正在新增第29个视角,当前影像可以看到已有点云的2148个,进行姿态估计(Pose Refinement Report),再进行BA优化,整体稀疏点云融合测量点236个,滤除测量点65个,最后进行三角测量(Retriangulation)新增观测点218个。增量式重建是个逐渐增加视角,并进行迭代优化重投影误差的过程。

2024-08-29 19:38:07 798

原创 三维建模基础理论----------笔记记录

三维相机是对**真实世界成像的模拟**,为了让三维物体在计算机屏幕上呈现出来的图像符合人眼观察效果,通常采用**透视投影**方式模拟相机成像,为了简化计算,可以用**针孔相机模型**来描述**透视投影**成像过程。

2024-08-25 16:59:57 714

原创 基于.MKV视频获取Kinect Azore SDK深度相机的depth内参

报错:Compatible Azure Kinect SDK not found. Please install v1.4.1 or v1.4.2。2、在“环境变量”对话框中,找到“系统变量”下的“Path”变量。只需要.mkv视频既可以获取内参,不需要使用棋格盘进行标定。3、添加你的SDK安装路径。4、如果还有报错,重启电脑。1、系统中找到系统设置。

2024-08-04 20:42:30 322

原创 MVSNet改进-ARIA-MVSNet和NR-MVSNet

因此,针对以上问题我们提出DHNC和DRRA模块来改善,具体来说,我们设计了 dhnc 模块来生成更有效的深度假设,它从具有相同法线的相邻像素中收集深度假设。因此,预测的深度可以更平滑、更准确,特别是在无纹理和重复的纹理区域。本文提出了一种自适应变间隔分割策略,在潜在地真深度值附近分配更密集的深度假设平面,在远离潜在地真深度值的地方分配相对稀疏的深度假设平面,而不是采用等间隔分割进行像素深度估计。附近的坐标位置,1为全是1的矩阵,请注意,给定深度图的表面法线计算是一种固定权重的方法,不需要可学习的参数。

2024-07-30 16:57:06 445

原创 SAM+DNIO自动分割标注本地部署(Zero-shot)

以上是本人根据自己电脑部署好在本地的所有文件信息。运行的文件为test1.py,其中图像的导入路径以及结果的保存路径都需要根据自己电脑实际路径情况修改即可。中间如有报错,环境中中缺什么包,那就 pip 安装什么就可以了。如果无法正常从Hugging Face 上在线下载,可以离线对该模型进行下载并导入。

2024-07-30 16:12:49 410

原创 Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering

3D-GS通常会导致大量冗余的高斯,试图拟合每个训练视图,而忽略了底层场景几何。因此,所得到的模型在显著的视图变化、无纹理区域和照明效果方面变得不那么鲁棒的。本研究使用Anchor points对三维高斯函数实现分布布局,并根据视图截锥内的观察方向和距离实时预测它们的属性,设计了Anchor points的增加和修剪策略。同时保证了渲染速度不会牺牲。

2024-07-24 22:40:34 1352

原创 Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo(CVPR)----------MVS-Gauss

三维重建

2024-07-22 16:22:07 1104

大津阈值分割数字图像处理fenge.zip

大津阈值分割数字图像处理,可以用于图像的处理,效果很好,医学图像应用很广泛。大津阈值分割数字图像处理,可以用于图像的处理,效果很好,医学图像应用很广泛。

2020-05-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除