目录
1,463. 岛屿的周长
给定一个 row x col 的二维网格地图 grid ,其中:grid[i][j] = 1 表示陆地, grid[i][j] = 0 表示水域。
网格中的格子 水平和垂直 方向相连(对角线方向不相连)。整个网格被水完全包围,但其中恰好有一个岛屿(或者说,一个或多个表示陆地的格子相连组成的岛屿)。
岛屿中没有“湖”(“湖” 指水域在岛屿内部且不和岛屿周围的水相连)。格子是边长为 1 的正方形。网格为长方形,且宽度和高度均不超过 100 。计算这个岛屿的周长。
该题在岛屿问题里面,算是比较基础的,我们就可以根据该题,慢慢理解岛屿问题的求解。
该题显而易见的是使用DFS解决。
首先我们需要设置边界,比如将边设置为r,c,那么我们边界就是:
(r<0 || c<0 || r>=grid.length-1 || c>grid[0].length-1)
然后就可以遍历节点,然后判断是非为1,是1就将该地址的值+1(避免重复遍历),然后我们将该位置的上下左右判断一下,如果是0(也就是岛屿和湖面的交界),当然遇到边界也是相同的情况,+1。
class Solution {
public int islandPerimeter(int[][] grid) {
for(int i=0;i<grid.length;i++){
for(int j=0;j<grid[0].length;j++){
if(grid[i][j]==1){
return abc(grid,i,j);
}
}
}
return 0;
}
public int abc(int[][] grid,int r,int c){
if(r<0 || c<0 || r>=grid.length || c>=grid[0].length){
return 1;
}
if(grid[r][c]==0){
return 1;
}
if(grid[r][c]==2){
return 0;
}
grid[r][c]=2;
return abc(grid,r-1,c)+abc(grid,r+1,c)+abc(grid,r,c-1)+abc(grid,r,c+1);
}
}
2,200. 岛屿数量
给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
对于该题,思路和上面那个题一样,只用把周长改为加数量就行:
首先还是循环遍历出岛屿位置,然后就开始寻找与它相邻的岛屿,将相邻的岛屿+1,直到没有岛屿,这样就可以看循环的次数得到岛屿数量。
class Solution {
public int numIslands(char[][] grid) {
int count=0;
for(int i=0;i<grid.length;i++){
for(int j=0;j<grid[0].length;j++){
if(grid[i][j]=='1'){
count++;
abc(grid,i,j);
}
}
}
return count;
}
private void abc(char[][] grid,int r,int c){
if (r < 0 || r >= grid.length || c < 0 || c >= grid[0].length) {
return;
}
if(grid[r][c]=='0' || grid[r][c]=='2'){
return;
}
grid[r][c]='2';
abc(grid,r-1,c);
abc(grid,r+1,c);
abc(grid,r,c+1);
abc(grid,r,c-1);
}
}
3,岛屿695. 岛屿的最大面积
给你一个大小为 m x n 的二进制矩阵 grid 。
岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。
岛屿的面积是岛上值为 1 的单元格的数目。
计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0 。
该题的思路还是和之前的一样,然后需要注意的点是需要将初始的+1.
class Solution {
public int maxAreaOfIsland(int[][] grid) {
int max=0;
for(int i=0;i<grid.length;i++){
for(int j=0;j<grid[0].length;j++){
if(grid[i][j]==1){
max=Math.max(max,abc(grid,i,j));
}
}
}
return max;
}
public int abc(int[][] grid,int r,int c){
if(r < 0 || r >= grid.length || c < 0 || c >= grid[0].length){
return 0;
}
if(grid[r][c]==0 || grid[r][c]==2){
return 0;
}
grid[r][c]=2;
return abc(grid,r-1,c)+abc(grid,r+1,c)+abc(grid,r,c-1)+abc(grid,r,c+1)+1;
}
}