活动地址:21天学习挑战赛
文章目录
一、算法
1.算法概述
分块查找法(Blocking Search)又称为索引顺序查找法,在此查找法中,除了原表本身以外还需要建立一个“索引表”,即将原表分成一块一块,每一块选取其最大的记录作为关键字项,块中的起始下标为块的指针项。索引表按照关键字有序,即块与块之间有序,块内元素无序。查找时先确定待查找的记录在哪一块,再在具体某个块内使用顺序查找法查找其具体位置。故其性能介于顺序查找法和折半查找法之间。
相关文章链接:
2.算法步骤
- 首先确定待查记录所在的块(子表)
- 然后在块中进行顺序查找确定记录的最终位置
以上图为例,假设要查找记录key=38:
- 先将key依次与索引表中各个最大关键字进行比较。因为22<38<44 则关键字为38的记录若存在则必定在第二个块(子表)中
- 然后从第二个块的起始下标之间使用顺序查找法查找key的具体位置,最终查找成功返回其下标:7 ;若查找失败则返回失败标识:-1
(注:以上图片来源于教材《数据结构简明教程》)
3.算法特点
优点:
- 在表中插入和删除元素时,只需要找到对应的块,就可以在块内进行插入和删除运算
- 块内无序,插入和删除都较为容易,无需进行大量移动
- 适合线性表既要快速查找又要经常动态变化的场景
缺点:
- 需要增加一个存储索引表的内存空间
- 需要对初始索引表按照其最大关键字(或最小关键字)进行排序运算
二、算法实践
1.Java代码
package TwentyOne_Challenge;
import java.util.Scanner;
public class DayNine {
public static void main(String[] args) {
Scanner input=new Scanner(System.in);
//原表
int a[]={9,22,12,14,35,42,44,38,48,60,58,47,78,80,77,82};
//分块获得对应的索引表,这里是一个以索引结点为元素的对象数组
BlockTable [] arr={
new BlockTable(22,0,3),//最大关键字为22 起始下标为0,3的块
new BlockTable(44,4,7),
new BlockTable(60,8,11),
new BlockTable(82,12,15)
};
//打印原表
System.out.print("原表元素如下:");
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
System.out.println();
//待查关键字
System.out.print("请输入你所要查询的关键字:");
int key=input.nextInt();
//调用分块查找算法,并输出查找的结果
int result=BlockSearch(a,arr,key);
System.out.print("查询结果为:"+result);
}
private static int BlockSearch(int a[],BlockTable[] arr,int key){
int left=0,right=arr.length-1;
//利用折半查找法查找元素所在的块
while(left<=right){
int mid=(right-left)/2+left;
if(arr[mid].key>=key){
right=mid-1;
}else{
left=mid+1;
}
}
//循环结束,元素所在的块为right+1 取对应左区间下标作为循环的开始点
int i=arr[right+1].low;
//在块内进行顺序查找确定记录的最终位置
while(i<=arr[right+1].high&&a[i]!=key){
i++;
}
//如果下标在块的范围之内,说明查找成功,佛否则失败
if(i<=arr[right+1].high){
return i;
}else{
return -1;
}
}
}
//索引表结点
class BlockTable{
int key;
int low;
int high;
BlockTable(int key,int low,int high){
this.key=key;
this.low=low;
this.high=high;
}
}
2.执行结果
三、复杂度分析
1.时间复杂度
不超过O(n)
2.空间复杂度
不超过O(n)