- 博客(11)
- 收藏
- 关注
原创 CINTA作业九:QR
十一章课后作业:1、2、3、4、5、6 1. 证明命题11.2 (1)封闭性:∀ a , b ∈, 有 a⋅b = QR ∈ (2)结合律:∀ a , b,c ∈ 所以 (a⋅b)⋅ca⋅(b⋅c) (3)单位元:1 (4)逆元:∀a∈QRp,存在x∈Z,使得a ≡ (mod p),又由a *≡ ≡ 1(mod p),所以≡(mod p) ...
2021-12-16 19:22:35
330
原创 CINTA作业八:CRT
课后练习:1、2、3、4、5 1.手动计算2000^2019 (mod 221),不允许使用电脑或者其他电子设备。 221=13*17 = =mod13==5 ===5 所以结果(5,5)=5 2. 运用CRT 求解:x ≡ 8 (mod 11) ,x ≡ 3 (mod 19) a=8,b=3;p=11,q=19 对11,19使用egcd算法可以得到:− 4 × 19 + 11 × 7 = 1 ≡7(mod19),≡7(mod11) y =aq+bp=8×19×7+8×...
2021-12-07 20:57:14
794
原创 CINTA作业七:同态
第九章课后习题:3、5、7、9 3.如果 H1和 H2是群 G 的正规子群,证明 H1H2也是群 G 的正规子群。 证明:H1和H2是群G的正规子群,则任意gG,h1H1,h2H2 有gh1=g, g h2 =g . 因为h1h2H1H2,根据封闭性,H1H2是G的子群 而gh1=g, g h2 =g,所以gh1h2= h’1gh2= h’1h’2g 即gH1H2=H1H2g,所以H1H2是群G的...
2021-11-17 21:58:30
650
1
原创 CINTA作业五:循环群
1、请心算列举出群Z10的所有生成元。 2. 群 Z_17^* 有多少个生成元?已知 3 是其中一个生成元,请问 9 和 10 是否生成元? 3、证明:如果群G没有非平凡子群,则群G是循环群。 4、证明:有限循环群G中任意元素的阶都整除群G的阶 1、有1、3、7、9 2、 17的阶为16,所以与16互素有8个,所以有8个生成元 一直3是其中一个生成元 =9,gcd(2,16)不等于1,所以9不是生成元 =10,gcd(3,16)=1,所以10是生成元 ...
2021-11-04 12:38:46
622
原创 CINTA作业六:拉格朗日定理
第八章习题:1,3,4,5,7 1、 (1) 任取,G,则H=H, 说明存在,H,有= 上式两边左乘,有= 再右乘,有= 所以H (2)有H,存在hH,=h,两边左乘 得=h,所以H=H 3、如果群H是群G的子群,且[G:H] = 2,请证明gH = Hg。 当gH,由吸收率得gH=Hg=H 当g不属于H,而[G:H] = 2,所以gH=Hg=G-H 4、 因为群H是群G的真子群存在群F=G-H,FG 所以2|H|=|G| 但是,群F可能不是一个群,是多个群,所以|H...
2021-11-03 22:27:06
231
原创 CINTA四:群、子群
请完成以下证明题: 3.证明命题6.6 (1)因为 G,G是群,所以存在G,有 =e ba=ca,两边右乘 b=c be=ce,因为be=b,ce=c,所以,b=e (2)因为 G,G是群,所以存在G,有 =e ab=ac,两边左乘 ab=ac eb=ec b=c 由(1)(2)可知,命题6.6成立 4、证明命题6.7 (1)任意 m、n,设 a1=,b1= 因为前提为任意 a,b群G,所以、G GG 所以= (2)任意 m...
2021-10-26 23:25:09
693
原创 CINTA作业三:同余、模指数、费尔马小定理、欧拉定理
1、实现求乘法逆元的函数,给定a和m,求a模m的乘法逆元,无解时请给出无解提示,并且只返回正整数。进而给出求解同余方程(ax = b mod m)的函数,即给定a,b,m,输出满足方程的x,无解给出无解提示。 2、实现模指数运算的函数,给定x、y和m,求x的y次方模m。 3、设p = 23和a = 5,使用费尔马小定理计算a^{2020} mod p? 4、使用欧拉定理计算2^{100000} mod 55。 5、手动计算7^{1000}的最后两个数位等于什么? 1、 #include &
2021-10-10 12:09:16
185
1
原创 CINTA作业二:GCD与EGCD
1、给出Bezout定理的完整证明。 2、实现GCD算法的迭代版本。 3、实现EGCD算法。输入:a、b两个整数,输出:r、s、d三个整数,满足ar + bs =d。 4、实现一种批处理版本的GCD算法,即,给定一个整数数组,输出其中所有整数的最大公因子。输入:一个整数数组a;输出:一个整数d,是a数组中所有整数的最大公因子 1. 假设d不是gcd(a,b)倍数 设d=k1*g+c,a=k2*g,b=k3*g 有ra+sb=d,所以r*k2*g+s*k3*g=k1*g+c 两边同时除g,
2021-09-22 22:25:28
132
1
原创 证明公理1.1
假设r>=b,所以有r=b+k(k>0) 有a=qb+r=qb+b+k=(q+1)b+k 因为q不等于q+1,所以不符合定理 所以假设不成立 存在唯一性,r必须为0<=r
2021-09-22 21:25:09
173
原创 用 C 语言编程实现一种迭代版本的简单乘法
#include using namespace std; int main() { int sum=0,a, b; cin >> a >> b; for (int i = 0; i < b; i++) { sum += a; } return 0; }
2021-09-22 21:24:18
220
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人