CINTA作业七:同态

第九章课后习题:3、5、7、9


3.如果 H1 和 H2 是群 G 的正规子群,证明 H1H2 也是群 G 的正规子群。

证明:H1和H2是群G的正规子群,则任意g\inG,h1\inH1,h2\inH2

           有gh1= h_{1}^{'}g, g h2 = h_{2}^{'}g .

          因为h1h2\inH1H2,根据封闭性,H1H2是G的子群

          而gh1= h_{1}^{'}g, g h2 = h_{2}^{'}g,所以gh1h2 = h’1gh2 = h’1h’2g

          即gH1H2=H1H2g,所以H1H2是群G的正规子群


5.定义映射 ϕ : G → G 为:g → g2。请证明 ϕ 是一种群同态当且仅当 G 是阿贝尔群。

证明:

   (1)充分性: ϕ是一种群同态ϕ(m*n)=m^{2}*n^{2}=ϕ(m)ϕ(n)

                          (m*n)^{2}m^{2}*n^{2} ->mn*mn= m^{2}*n^{2} 

                两边左边各自消去m,右边消去n,有n*m=m*n,

                  所以G是阿贝尔群

   (2)必要性:G是阿贝尔群,有n*m=m*n

两边左边各自乘m,右边乘n,有 mn*mn= m^{2}*n^{2} ->  (m*n)^{2}m^{2}*n^{2}

因为 ϕ(m)ϕ(n)= m^{2}*n^{2}ϕ(m*n)=(m*n)^{2}

所以ϕ(m*n)=ϕ(m)ϕ(n), ϕ是一种群同态


7.证明:如果 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群。

证明:依题意有[G:H] = 2

        (1)当g\inH时,有gH=H=Hg,所以H是G的正规子群

         (2)当g不属于H时,设gH=K,K不等于H

              因为[G:H] = 2,所以H和K公共组成G,H和K没交集

               Hg=K1,K1与H没交集,且公共组成G

           所以K=K1,所以gH=Hg,所以H是G的正规子群

(1)(2)都说明H是G的正规子群。


9.证明:如果群 G 是循环群,则商群 G/H 也是循环群

证明:G是循环群,设最小整数n(G的阶),使G的每个元素g,有g^{n}=e,

因为商群 G/H,所以该群的阶为[G:H],设为k,k能整除n,商群 G/H里每个元素a,

 都有a^{k}a^{k}...a^{k}=g^{n}=e,所以商群 G/H 也是循环群

 

 

 

          

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值