第九章课后习题:3、5、7、9
3.如果 H1 和 H2 是群 G 的正规子群,证明 H1H2 也是群 G 的正规子群。
证明:H1和H2是群G的正规子群,则任意gG,h1H1,h2H2
有gh1= g, g h2 = g .
因为h1h2H1H2,根据封闭性,H1H2是G的子群
而gh1= g, g h2 = g,所以gh1h2 = h’1gh2 = h’1h’2g
即gH1H2=H1H2g,所以H1H2是群G的正规子群
5.定义映射 ϕ : G → G 为:g → g2。请证明 ϕ 是一种群同态当且仅当 G 是阿贝尔群。
证明:
(1)充分性: ϕ是一种群同态,ϕ(m*n)=*=ϕ(m)ϕ(n)
= * ->mn*mn= *
两边左边各自消去m,右边消去n,有n*m=m*n,
所以G是阿贝尔群
(2)必要性:G是阿贝尔群,有n*m=m*n
两边左边各自乘m,右边乘n,有 mn*mn= * -> = *
因为 ϕ(m)ϕ(n)= *,ϕ(m*n)=
所以,ϕ(m*n)=ϕ(m)ϕ(n), ϕ是一种群同态
7.证明:如果 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群。
证明:依题意有[G:H] = 2
(1)当gH时,有gH=H=Hg,所以H是G的正规子群
(2)当g不属于H时,设gH=K,K不等于H
因为[G:H] = 2,所以H和K公共组成G,H和K没交集
Hg=K1,K1与H没交集,且公共组成G
所以K=K1,所以gH=Hg,所以H是G的正规子群
(1)(2)都说明H是G的正规子群。
9.证明:如果群 G 是循环群,则商群 G/H 也是循环群
证明:G是循环群,设最小整数n(G的阶),使G的每个元素g,有=e,
因为商群 G/H,所以该群的阶为[G:H],设为k,k能整除n,商群 G/H里每个元素a,
都有...==e,所以商群 G/H 也是循环群