HIART-MCS: High Resilience and Approximated Computing Architecture for Imprecise MCS 2020'RTSS 的期刊拓展版。
以下只讲拓展部分
一、文章核心
文章提出了一种新的IMCS框架,名为HIART-MCS,能够在运行时动态调整计算精度,从而减少由于不精确计算带来的计算错误,并在不牺牲系统性能的前提下,提升系统的吞吐量和灵活性。此外,文章还提供了该系统的理论分析和优化方法,并通过实验验证了该框架在不同配置下的效果。核心目标是通过改进的架构和硬件设计,既保证高关键性任务的实时性,又提升低关键性任务的存活率和系统整体的可用性。
二、MID-mode
HIART-MCS系统如何通过近似计算加速低关键性任务(LO-tasks)的执行,但代价是计算精度会降低。为此,系统需要为每个低关键性任务获取三个关键属性:
-
近似程度(Mi):这是任务执行时对操作数尾数部分的近似掩码值,取值范围为0到23。近似程度越高,任务的计算速度越快,但精度越低。
-
计算质量(Qi):表示任务在近似计算下的正确性水平,取值范围是0%到100%。随着近似程度的增加,计算质量可能下降。
-
在中模式下的最坏情况执行时间(WCET,Cap i):在“中模式”下,由于应用了近似计算,任务的执行时间相对于“低模式”(LO-mode)的最坏情况执行时间(Clo i)会有所缩短。
为了获得这些属性,文章提出了一种基于实验测量的方法。这个方法的具体步骤如下:
-
初始化和输入生成:首先初始化传统的MCS系统和HIART-MCS系统,并生成随机的输入数据集。
-
实验测量:通过不同的近似程度(从0到23)运行任务,并记录每次执行的输出结果和执行时间。
-
结果分析:将HIART-MCS的输出结果与参考结果进行比较,并判断是否在可接受的范围内。计算