离散数学作业-总集

作业day-1

1、学习数学表达式的困难
(1) 下标混用,以及不够用,下标表示出现逻辑问题;
min ⁡ M ( ∑ j = 1 n − 1 α j y j − y i ) 2 \min _{M}\left(\sum_{j=1}^{n-1} \alpha_{j} y_{j}-y_{i}\right)^{2} Mmin(j=1n1αjyjyi)2
该式中 ∑ \sum 部分想描述n个预测中除第 i i i个预测外其他预测的加权和,而该式表达不清晰,可能存在着 i = = j i==j i==j的情况.
(2)向量数值不分;
在这里插入图片描述
此处x应为 x \mathbf{x} x

(3)表达式全篇未统一。
在这里插入图片描述

同一个符号两个不同的定义。
2、 令 A = { 3 , 5 } \mathbf{A}=\{3,5\} A={3,5},写出 2 A 2^{\mathbf{A}} 2A

2 A = { ∅ , { 3 } , { 5 } , { 3 , 5 } } 2^{\mathbf{A}}=\{\emptyset, \{3\}, \{5\}, \{3,5\} \} 2A={,{3},{5},{3,5}}.

3、展开 2 ∅ 2^{\emptyset} 2

2 ∅ = { ∅ } 2^{\emptyset}=\{\emptyset\} 2={}.

4、令 A = { 5 , 6 , 7 , 8 , 9 } \mathbf{A}=\{5,6,7,8,9\} A={5,6,7,8,9}写出另外两种表达式
方法1-枚举法: A = { 5 , … , 9 } \mathbf{A} =\{5,\dots,9\} A={5,,9}. code:\mathbf{A} = {5, \dots, 9}
方法2-谓词法: A = { x ∈ N ∣ 4 < x < 10 } \mathbf{A} = \{x \in \mathbb{N}| 4< x < 10 \} A={xN4<x<10}. code:\mathbf{A} = {x \in \mathbb{N}| 4< x < 10 }

7、Deep multi-view的符号错误
(1)自变量x可能是 x \mathbf{x} x
X ( m ) = [ x 1 ( m ) , ⋯   , x N ( m ) ] \mathbf{X}^{(m)}=\left[x_{1}^{(m)}, \cdots, x_{N}^{(m)}\right] X(m)=[x1(m),,xN(m)]

(2) 该用数学模式时并未使用;
在这里插入图片描述
(3) m与M混用;
X ( m ) = [ x 1 ( m ) , ⋯   , x N ( m ) ] F 1 ( X ( 1 ) ) , ⋯   , F M ( X ( M ) ) \mathbf{X}^{(m)}=\left[x_{1}^{(m)}, \cdots, x_{N}^{(m)}\right] \\ F_{1}\left(\mathbf{X}^{(1)}\right), \cdots, F_{M}\left(\mathbf{X}^{(M)}\right) X(m)=[x1(m),,xN(m)]F1(X(1)),,FM(X(M))
(4) ∑ \sum 没有上界;
L p ( x , i ) = − log ⁡ exp ⁡ ( x [ i ] ) ∑ j exp ⁡ ( x [ j ] ) \mathcal{L}^{p}(x, i)=-\log \frac{\exp (x[i])}{\sum_{j} \exp (x[j])} Lp(x,i)=logjexp(x[j])exp(x[i])

(5) Y i j \mathbf{Y}_{ij} Yij前后均未给出明确定义.
L ( I , Y ) = Y i j ⋅ log ⁡ { E m ( F ( I ) } ⋅ ( ρ ( I ) + α ∥ φ ( I ) ′ − 1 K N ∗ q ∥ ) ) \mathcal{L}(\mathbf{I}, \mathbf{Y})= \mathbf{Y}_{i j} \cdot \log \left\{\mathcal{E}_{m}(\mathcal{F}(\mathbf{I})\} \cdot\left(\rho(\mathbf{I})+\alpha\left\|\varphi(\mathbf{I})^{\prime}-\mathbf{1}_{K_{N * q}}\right\|\right)\right) L(I,Y)=Yijlog{Em(F(I)}(ρ(I)+αφ(I)1KNq))

作业day-2

1、令 A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A}=\{1,2,5,8,9\} A={1,2,5,8,9},写出 A \mathbf{A} A 上的 “模 2 同余” 关系及相应的划分
R = { ( 1 , 1 ) , ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 2 ) , ( 2 , 8 ) , ( 5 , 1 ) , ( 5 , 5 ) , ( 5 , 9 ) , ( 8 , 2 ) , ( 8 , 8 ) , ( 9 , 1 ) , ( 9 , 5 ) , ( 9 , 9 ) } \mathbf{R}=\{(1,1),(1,5),(1,9),(2,2),(2,8),(5,1),(5,5),(5,9),(8,2),(8,8),(9,1),(9,5),(9,9)\} R={(1,1),(1,5),(1,9),(2,2),(2,8),(5,1),(5,5),(5,9),(8,2),(8,8),(9,1),(9,5),(9,9)}
P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P}=\{\{1,5,9\},\{2,8\}\} P={{1,5,9},{2,8}}
2、令 A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A}=\{1,2,5,8,9\} A={1,2,5,8,9}, 自己给定两个关系 R 1 \mathbf{R}_1 R1 R 2 \mathbf{R}_2 R2
并计算 R 1 ∘ R 2 \mathbf{R}_1∘\mathbf{R}_2 R1R2, R 1 + \mathbf{R}_1^+ R1+ R 1 ∗ \mathbf{R}_1^* R1
R 1 = { ( a , b ) ∈ A × A ∣ a / 2 = b / 2 } = { ( 2 , 2 ) , ( 2 , 8 ) , ( 8 , 2 ) , ( 8 , 8 ) } \mathbf{R}_1=\{(a, b) \in \mathbf{A} \times \mathbf{A} \mid a / 2=b / 2\}=\{(2,2),(2,8),(8,2),(8,8)\} R1={(a,b)A×Aa/2=b/2}={(2,2),(2,8),(8,2),(8,8)}
R 1 = { ( a , b ) ∈ A × A ∣ a m o d    3 = b m o d    3 } = { ( 2 , 2 ) , ( 2 , 5 ) , ( 2 , 8 ) , ( 5 , 2 ) , ( 5 , 5 ) , ( 5 , 8 ) , ( 8 , 2 ) , ( 8 , 5 ) , ( 8 , 8 ) } \mathbf{R}_1=\{(a, b) \in \mathbf{A} \times \mathbf{A} \mid a \mod 3 =b \mod 3\}=\{(2,2),(2,5),(2,8),(5,2),(5,5),(5,8),(8,2),(8,5),(8,8)\} R1={(a,b)A×Aamod3=bmod3}={(2,2),(2,5),(2,8),(5,2),(5,5),(5,8),(8,2),(8,5),(8,8)}
R 1 + = ⋃ i = 1 ∣ A ∣ R i = R 1 ∪ R 2 ∪ R 3 ∪ R 4 ∪ R 5 = { ( 2 , 2 ) , ( 2 , 8 ) , ( 8 , 8 ) } \mathbf{R}_1^+=\bigcup_{i=1}^{|\mathbf{A}|} \mathbf{R}^{i}=\mathbf{R}^{1} \cup \mathbf{R}^{2} \cup \mathbf{R}^{3} \cup \mathbf{R}^{4} \cup \mathbf{R}^{5}=\{(2,2),(2,8),(8,8)\} R1+=i=1ARi=R1R2R3R4R5={(2,2),(2,8),(8,8)}
R 1 ∗ = R 1 + ∪ R 0 = { ( 2 , 2 ) , ( 2 , 8 ) , ( 8 , 8 ) } \mathbf{R}_1^*=\mathbf{R}_1^+\cup \mathbf{R}^0=\{(2,2),(2,8),(8,8)\} R1=R1+R0={(2,2),(2,8),(8,8)}

4、给定一个矩阵并计算其各种范数
给定矩阵 X = [ 1 2 3 4 ] \mathbf{X}=\begin{bmatrix} 1&2\\ 3&4\\ \end{bmatrix} X=[1324]
l 0 = ∣ ∣ X ∣ ∣ 0 = 4 l_0=||\mathbf{X}||_0=4 l0=X0=4;
l 1 = ∣ ∣ X ∣ ∣ 1 = 1 + 2 + 3 + 4 = 10 l_1=||\mathbf{X}||_1=1+2+3+4=10 l1=X1=1+2+3+4=10;
l 2 = ∣ ∣ X ∣ ∣ 2 = 1 2 + 2 2 + 3 2 + 4 2 = 30 l_2=||\mathbf{X}||_2=\sqrt{1^2+2^2+3^2+4^2}=\sqrt{30} l2=X2=12+22+32+42 =30 ;
l ∞ = ∣ ∣ X ∣ ∣ ∞ = 4 l_\infin=||\mathbf{X}||_\infin=4 l=X=4;

4、解释优化目标式子:
min ⁡ ∑ ( i , j ) ∈ Ω ( f ( x i , t j ) − r i j ) (1) \min \sum_{(i,j)\in\Omega}(f(\mathbf{x}_i,\mathbf{t}_j)-r_{ij})\tag{1} min(i,jΩ(f(xi,tj)rij)(1)
式中:
X = [ x 1 , … , x n ] \mathbf{X}=[\mathbf{x}_1,\dots,\mathbf{x}_n] X=[x1,,xn]表示用户信息;
T = [ t 1 , … , t n ] \mathbf{T}=[\mathbf{t}_1,\dots,\mathbf{t}_n] T=[t1,,tn]表示商品信息;
r i j r_{ij} rij表示评分矩阵 R = ( r i j ) n × m \mathbf{R} = (r_{ij})_{n×m} R=(rij)n×m中具体的某个评分;
Ω Ω Ω 为评分矩阵 R \mathbf{R} R中非零元素对应位置的集合;
f f f目标函数分别通过用户和商品的属性生成一个评分结果;
该式要学习一个 f f f 用于商品的推荐,使得预测结果 f ( x i , t j ) f(\mathbf{x}_i,\mathbf{t}_j) f(xi,tj)与真实值 r i j r_{ij} rij均方误差MSE最小。

作业day-3

1、将向量 ( x 2 , x 4 , …   ) (x_2, x_4, \dots) (x2,x4,)累加写出表达式
y = ∑ i = 1 ⌊ n / 2 ⌋ x 2 i y=\sum_{i=1}^{\lfloor n/2 \rfloor}x_{2i} y=i=1n/2x2i; code:y=\sum_{i=1}^{n}x_{2i}

2、各出一道累加、累乘、积分表达式的习题, 并给出标准答案
累加: y = ∑ i = 1 100 i = 5050 y=\sum_{i=1}^{100} i=5050 y=i=1100i=5050
累乘: y = ∏ i = 1 5 0.5 × x i = 3.75 y=\prod_{i=1}^{5}0.5\times x_i =3.75 y=i=150.5×xi=3.75
定积分: y = ∫ 2 5 2 x d x = 21 y=\int_{2}^{5}2x\mathrm{d}x=21 y=252xdx=21

3、你使用过三重累加吗? 描述一下其应用
弗洛伊德算法,寻找两点之间最短路径,其时间复杂度为 O ( n 3 ) O{(n^3)} O(n3)

(4)给一个常用的定积分, 将手算结果与程序结果对比.
给定定积分: y = ∫ 2 5 2 x d x y=\int_{2}^{5}2x\mathrm{d}x y=252xdx
手算: y = ∫ 2 5 2 x d x = x 2 ∣ 2 5 = 25 − 4 = 21 y=\int_{2}^{5}2x\mathrm{d}x=x^2|_2^5=25-4=21 y=252xdx=x225=254=21
代码:

import numpy as np
delta=0.01
sumValue=0.0
for i in np.arange(2.0,5.0,delta):
    sumValue+=2*i*delta
print (sumValue)

运算结果:20.96999999999981

4、自己写一个小例子 ( n = 3 , m = 1 ) (n = 3, m = 1) (n=3,m=1)来验证最小二乘法
样例:
X = [ 1 2 3 ] \mathbf{X}= \begin{bmatrix} 1&2&3\\ \end{bmatrix} X=[123]
Y = [ − 1 3 4 ] \mathbf{Y}=\begin{bmatrix} -1&3&4\\ \end{bmatrix} Y=[134]
w = ( X T X ) − 1 X T Y = ( [ 1 2 3 1 1 1 ] [ 1 1 2 1 3 1 ] ) − 1 [ 1 2 3 1 1 1 ] [ − 1 3 4 ] = [ 2.5 − 3 ] \mathbf{w}=(\mathbf{X}^\mathrm{T}\mathbf{X})^{-1}\mathbf{X}^\mathrm{T}\mathbf{Y}=\left(\begin{bmatrix} 1&2&3\\ 1&1&1\\ \end{bmatrix} \begin{bmatrix} 1&1\\ 2&1\\ 3&1\\ \end{bmatrix}\right)^{-1} \begin{bmatrix} 1&2&3\\ 1&1&1\\ \end{bmatrix} \begin{bmatrix} -1\\ 3\\ 4\\ \end{bmatrix}=\begin{bmatrix} 2.5\\ -3\\ \end{bmatrix} w=(XTX)1XTY=[112131]1231111[112131]134=[2.53]
最终答案: y = 2.5 x − 3 y=2.5x-3 y=2.5x3

5、岭回归推导
L ( w ) = arg ⁡ min ⁡ w ∥ X w − Y ∥ 2 2 + λ ∥ w ∥ 2 2 = = ( X w − Y ) T ( X w − Y ) + λ w T w = ( w T X T − Y T ) ( X w − Y ) + λ w T w = w T X T X w − w T X T Y − Y T X w + Y T Y + λ w T w L(\mathbf{w})=\underset{\mathbf{w}}{\arg \min }\|\mathbf{X} \mathbf{w}-\mathbf{Y}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{2}^{2}==(\mathbf{X} \mathbf{w}-\mathbf{Y})^{\mathrm{T}}(\mathbf{X} \mathbf{w}-\mathbf{Y})+\lambda\mathbf{w}^{\mathrm{T}}\mathbf{w} \\ =\left(\mathbf{w}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}-\mathbf{Y}^{\mathrm{T}}\right)(\mathbf{X} \mathbf{w}-\mathbf{Y}) +\lambda\mathbf{w}^{\mathrm{T}}\mathbf{w}\\ =\mathbf{w}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w}-\mathbf{w}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{Y}-\mathbf{Y}^{\mathrm{T}} \mathbf{X} \mathbf{w}+\mathbf{Y}^{\mathrm{T}} \mathbf{Y}+\lambda\mathbf{w}^{\mathrm{T}}\mathbf{w} L(w)=wargminXwY22+λw22==(XwY)T(XwY)+λwTw=(wTXTYT)(XwY)+λwTw=wTXTXwwTXTYYTXw+YTY+λwTw
w \mathbf{w} w求导有:
∂ L ( w ) ∂ w = 2 X T X w − X T Y − X T Y + 2 λ w \frac{\partial L(w)}{\partial w}=2 \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w}- \mathbf{X}^{\mathrm{T}} \mathbf{Y}- \mathbf{X}^{\mathrm{T}} \mathbf{Y}+2 \lambda \mathbf{w} wL(w)=2XTXwXTYXTY+2λw
∂ L ( w ) ∂ w = 0 \frac{\partial L(w)}{\partial w}=0 wL(w)=0可得:
X T X w − X T Y + λ w = 0 \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w}-\mathbf{X}^{\mathrm{T}} \mathbf{Y}+\lambda \mathbf{w}=0 XTXwXTY+λw=0

作业3 逻辑回归推导

技术1:将线性回归映射到 [ 0 , 1 ] [0,1] [0,1]——sigmoid函数 σ ( x ) = 1 1 + e − x \sigma(x)=\frac{1}{1+e^{-x}} σ(x)=1+ex1
在这里插入图片描述
x = w T x \mathbf{x}=\mathbf{w}^\mathrm{T}\mathbf{x} x=wTx,则逻辑回归模型为:
y = σ ( f ( x ) ) = σ ( w T x ) = 1 1 + e − w T x (1) y=\sigma(f(\mathbf{x}))=\sigma\left(\mathbf{w}^\mathrm{T} \mathbf{x}\right)=\frac{1}{1+e^{-\mathbf{w}^\mathrm{T} \mathbf{x}}} \tag{1} y=σ(f(x))=σ(wTx)=1+ewTx1(1)
技术2:利用对数对数降低损失函数的计算难度
令标签为1的概率为p:
P y = 1 = 1 1 + e − w T x = p (2) P_{y=1}=\frac{1}{1+e^{-\mathbf{w}^\mathrm{T} \mathbf{x}}}=p \tag{2} Py=1=1+ewTx1=p(2)
标签为0的概率为 P y = 0 = 1 − p P_{y=0}=1-p Py=0=1p,则第i个样本的概率为:
P ( y i ∣ x i ) = p y i ( 1 − p ) 1 − y i (3) P\left(y_{i} \mid \mathbf{x}_{i}\right)=p^{y_{i}}(1-p)^{1-y_{i}} \tag{3} P(yixi)=pyi(1p)1yi(3)
对于n个样本 { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) … ( x n , y n ) } \left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right),\left(\mathbf{x}_{3}, y_{3}\right) \ldots\left(\mathbf{x}_{n}, y_{n}\right)\right\} {(x1,y1),(x2,y2),(x3,y3)(xn,yn)}其概率为:
P 总  = P ( y 1 ∣ x 1 ) P ( y 2 ∣ x 2 ) P ( y 3 ∣ x 3 ) … P ( y n ∣ x n ) = ∏ i = 1 n p y i ( 1 − p ) 1 − y i (4) \begin{aligned} P_{\text {总 }} &=P\left(y_{1} \mid \mathbf{x}_{1}\right) P\left(y_{2} \mid \mathbf{x}_{2}\right) P\left(y_{3} \mid \mathbf{x}_{3}\right) \ldots P\left(y_{n} \mid \mathbf{x}_{n}\right) \\ &=\prod_{i=1}^{n} p^{y_{i}}(1-p)^{1-y_{i}}\tag{4} \end{aligned} P =P(y1x1)P(y2x2)P(y3x3)P(ynxn)=i=1npyi(1p)1yi(4)
对其求对数不改变其单调性,有损失函数:
L ( w ) = ln ⁡ ( P 总  ) = ln ⁡ ( ∏ n = 1 N p y n ( 1 − p ) 1 − y n ) = ∑ n = 1 N ln ⁡ ( p y n ( 1 − p ) 1 − y n ) = ∑ n = 1 N ( y n ln ⁡ ( p ) + ( 1 − y n ) ln ⁡ ( 1 − p ) ) (5) \begin{aligned} L(\mathbf{w})=\ln \left(P_{\text {总 }}\right) &=\ln \left(\prod_{n=1}^{N} p^{y_{n}}(1-p)^{1-y_{n}}\right) \\ &=\sum_{n=1}^{N} \ln \left(p^{y_{n}}(1-p)^{1-y_{n}}\right) \\ &=\sum_{n=1}^{N}\left(y_{n} \ln (p)+\left(1-y_{n}\right) \ln (1-p)\right)\tag{5} \end{aligned} L(w)=ln(P )=ln(n=1Npyn(1p)1yn)=n=1Nln(pyn(1p)1yn)=n=1N(ynln(p)+(1yn)ln(1p))(5)
此刻,只需要找到一个 w ∗ \mathbf{w}^* w使概率最大,则有:
w ∗ = arg ⁡ max ⁡ w L ( w ) = − arg ⁡ min ⁡ w L ( w ) (6) \mathbf{w}^*=\arg \max _{\mathbf{w}} L(\mathbf{w})=-\arg \min _{\mathbf{w}} L(\mathbf{w})\tag{6} w=argwmaxL(w)=argwminL(w)(6)
技术3:梯度下降求解无解析解的情况
式(2)对p求导,可得
p ′ = f ′ ( w ) = ( 1 1 + e − w T w ) ′ = 1 1 + e − w T x ⋅ e − w T x 1 + e − w T x ⋅ x = p ( 1 − p ) x (7) \begin{aligned} p^{\prime}=f^{\prime}(\mathbf{w}) &=\left(\frac{1}{1+e^{-\mathbf{w}^{\mathrm{T}} \mathbf{w}}}\right)^{\prime} \\ &=\frac{1}{1+e^{-\mathbf{w}^{\mathrm{T}} \mathbf{x}}} \cdot \frac{e^{-\mathbf{w}^{\mathrm{T}} \mathbf{x}}}{1+e^{-\mathbf{w}^{\mathrm{T}} \mathbf{x}}} \cdot \mathbf{x} \\ &=p(1-p) \mathbf{x}\tag{7} \end{aligned} p=f(w)=(1+ewTw1)=1+ewTx11+ewTxewTxx=p(1p)x(7)
对(5)关于 w \mathbf{w} w 求导有:
∂ L ( w ) ∂ w = = ∑ i = 1 n ( y i ln ⁡ ′ ( p ) + ( 1 − y i ) ln ⁡ ′ ( 1 − p ) ) = ∑ i = 1 n ( ( y i 1 p p ′ ) + ( 1 − y i ) 1 1 − p ( 1 − p ) ′ ) = ∑ i = 1 n ( y i ( 1 − p ) x i − ( 1 − y i ) p x i ) = ∑ i = 1 n ( y i − p ) x i (8) \begin{aligned} \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}=&=\sum_{i=1}^{n}\left(y_{i} \ln^{\prime}(p)+\left(1-y_{i}\right) \ln^{\prime}(1-p)\right) \\ &=\sum_{i=1}^{n}\left(\left(y_{i} \frac{1}{p} p^{\prime}\right)+\left(1-y_{i}\right) \frac{1}{1-p}(1-p)^{\prime}\right) \\ &=\sum_{i=1}^{n}\left(y_{i}(1-p) \mathbf{x}_{i}-\left(1-y_{i}\right) p \mathbf{x}_{i}\right) \\ &=\sum_{i=1}^{n}\left(y_{i}-p\right) \mathbf{x}_{i}\tag{8} \end{aligned} wL(w)==i=1n(yiln(p)+(1yi)ln(1p))=i=1n((yip1p)+(1yi)1p1(1p))=i=1n(yi(1p)xi(1yi)pxi)=i=1n(yip)xi(8)
令(8)偏导为0由于无法获得解析式,则借助梯度下降可得模型参数 w \mathbf{w} w更新式子:
w t + 1 = w T − α ∂ L ( w ) ∂ w (9) \mathbf{w}^{t+1}=\mathbf{w}^\mathrm{T} -\alpha \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \tag{9} wt+1=wTαwL(w)(9)

逻辑回归的特点:
(1)使用sigmoid函数映射线性回归到 [ 0 , 1 ] [0,1] [0,1]区间;
(2)使用概率将回归问题变成分类问题;
(3)使用对数函数降低计算难度;
(4)使用梯度下降在无法获得解析式的情况下求解模型参数;
(5)不能用Logistic回归去解决非线性问题,因为Logistic的决策面为线性面。

作业day-4

1、无向图定义
Definition :An undirected network is a tuple N = ( V , E , W ) N = (\mathbf{V}, \mathbf{E}, \mathbf{W}) N=(V,E,W),where V \mathbf{V} V is the set of nodes, E ⊆ V × V \mathbf{E} \subseteq V \times V EV×V where ( v i , v j ) ∈ E ⇔ ( v j , v i ) ∈ E (v_i,v_j) \in \mathbf{E} \Leftrightarrow (v_j,v_i) \in \mathbf{E} (vi,vj)E(vj,vi)E is the set of nodes, w ∈ W w \in \mathbf{W} wW is the weighted of ( v i , v j ) (v_i, v_j) (vi,vj).

2、树的定义
图1
(1)自己画一棵树, 将其元组各部分写出来 (特别是函数 p p p).
Let ϕ \phi ϕ be the empty node, a tree is a triple T = ( A , A 0 , p ) T=(\mathbf{A},\rm A_0, p) T=(A,A0,p) where
∙ A = { A 0 , A 1 , … , A 6 } ≠ ϕ \bull \mathbf{A} =\{\rm A_0, \rm A_1, \dots, \rm A_6\}\neq\phi A={A0,A1,,A6}=ϕ is the set of nodes;
∙ A 0 ∈ A \bull \rm A_0\in \mathbf{A} A0A is the root node;
∙ p : A → A ∪ { ϕ } \bull p: \mathbf{A} \to\mathbf{A} \cup\{\phi\} p:AA{ϕ} is the parent mapping satisfying;
   : p ( A 0 ) = ϕ :p(A_0)=\phi :p(A0)=ϕ
    : ∀ A ∈ A , ∃ 1 n ≥ 0 ,  s.t.  p ( n ) ( A ) = A 0 :\forall \rm A \in \mathbf{A}, \exists 1 n \geq 0, \text { s.t. } p^{(n)}(A)=A_0 :AA,1n0, s.t. p(n)(A)=A0
(2)针对该树, 将代码中的变量值写出来
code:

public class Tree {
	/**
	 * 节点数. 表示节点 v_0 至 v_{n-1}.
	 */
	int n;
	
	/**
	 * 根节点. 0 至 n-1.
	 */
	int root;
	
	/**
	 * 父节点.
	 */
	int[] parent;

	/**
	 * 构造一棵树, 第一个节点为根节点, 其余节点均为其直接子节点, 也均为叶节点.
	 */
	public Tree(int paraN) {
		n = paraN;
		parent = new int[n];
		parent[0] = -1; // -1 即 \phi
	}// Of the constructor
}//Of class Tree

其中:
n=6;root=0;
parent[0]=-1; parent[1]=0; parent[2]=0; parent[3]=1; parent[4]=1; parent[5]=2; parent[6]=2;

3、画一棵三叉树, 并写出它的 child 数组
在这里插入图片描述
child: { ( 1 , 2 , 3 ) ; ( 4 , − 1 , 5 ) ; ( − 1 , − 1 , 6 ) ; ( − 1 , − 1 , − 1 ) ; ( − 1 , − 1 , − 1 ) ; ( − 1 , − 1 , − 1 ) ; ( − 1 , − 1 , − 1 ) } \{(1, 2, 3) ;(4, -1, 5) ;(-1, -1, 6) ;(-1, -1,-1) ;(-1,-1,-1) ;(-1,-1,-1) ;(-1,-1,-1)\} {(1,2,3);(4,1,5);(1,1,6);(1,1,1);(1,1,1);(1,1,1);(1,1,1)}

4、重新定义树
Let ϕ \phi ϕ be the empty node, a tree is a triple T = ( A , A 0 , Σ , c ) T=(\mathbf{A}, \rm A_0, \Sigma, c) T=(A,A0,Σ,c) where
∙ A = { A 0 , A 1 , … , A 6 } ≠ ϕ \bull \mathbf{A} =\{ \rm A_0, \rm A_1, \dots,\rm A_6\}\neq\phi A={A0,A1,,A6}=ϕ is the set of nodes;
∙ A 0 ∈ A \bull \rm A_0\in \mathbf{A} A0A is the root node;
∙ Σ = { 0 , … , 6 } \bull \Sigma =\{0,\dots,6\} Σ={0,,6} is the alphabet;
∙ c : ( A ∪ { ϕ } ) × Σ ∗ → A ∪ { ϕ } \bull c:(\mathbf{A} \cup\{\phi\}) \times \Sigma^{*} \rightarrow \mathbf{A} \cup\{\phi\} c:(A{ϕ})×ΣA{ϕ} satisfying ;
   ∙ ∀ A ∈ A , ∃ 1 s ∈ Σ ∗  s.t.  c ( r , s ) = A \bull \forall \rm A \in \mathbf{A}, \exists 1 s \in \Sigma^{*} \text { s.t. } c(r, s)=A AA,1sΣ s.t. c(r,s)=A

作业day-5

1、定义一个标签分布系统, 即各标签的值不是 0/1,而是 [ 0 , 1 ] [0,1] [0,1] 区间的实数,且同一对象的标签和为1
A label distribution learning is a tuple S = ( X , Y ) S = (\mathbf{X}, \mathbf{Y}) S=(X,Y) where X = [ x i j ] n × m ∈ R n × m \mathbf{X} = [x_{ij}]_{n \times m} \in \mathbb{R}^{n \times m} X=[xij]n×mRn×m is the data matrix, Y = [ y i k ] n × l ∈ [ 0 , 1 ] n × l \mathbf{Y} = [y_{ik}]_{n \times l} \in [0, 1]^{n \times l} Y=[yik]n×l[0,1]n×l is the label matrix, s.t. ∑ t = 1 k y i k = 1 \sum_{t=1}^k y_{ik} = 1 t=1kyik=1, n n n is the number of instances, m m m is the number of features, and l l l is the number of labels.

2、 找一篇你们小组的论文来详细分析数学表达式, 包括其涵义, 规范, 优点和缺点.
数学表达式:
min ⁡ v ( j ) E ( v ( j ) ) = ∑ i = 1 l L ( y i , g ( j ) ( x i ) ) + ∑ i = l + 1 l + u v i ( j ) L ( g ‾ ( j − 1 ) ( x i ) , g ( j ) ( x i ) ) (10) \min_{ \mathbf{v}^{(j)}} E\left( \mathbf{v}^{(j)}\right)= \sum_{i = 1}^{l} L\left(y_{i}, g^{(j)}(\mathbf{x}_{i})\right) + \sum_{i=l+1}^{l+u}v_{i}^{(j)}L\left(\overline{g}^{(j-1)}{(\mathbf{x}_i)}, g^{(j)}(\mathbf{x}_{i})\right)\tag{10} v(j)minE(v(j))=i=1lL(yi,g(j)(xi))+i=l+1l+uvi(j)L(g(j1)(xi),g(j)(xi))(10)
涵义:在第 j j j个视角上,在输入为 v ( j ) \mathbf{v}^{(j)} v(j)的情况下,使模型在标记数据与伪标记数据上的预测损失最小。
优点:简介明了,变量名未出现混用的情况。
缺点:无法一次性讲整个多个视角之间的优化情况写出。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值