使用蒙特卡罗方法计算圆周率近似值和定积分
1.实验目的
(1)理解蒙特卡罗方法原理。
(2)熟练使用内置函数input()接收用户输入。
(3)养成对用户输入立即进行类型转换的习惯。
(4)熟练使用for循环控制循环次数。
(5)理解for循环的本质与工作原理。
(6)了解random模块中的常用函数。
2.实验内容
蒙特卡罗方法是一种通过概率统计来得到问题近似解的方法,在很多领域都有重要的应用,其中就包括圆周率近似值的计算问题。假设有一块边长为2的正方形木板,上面画一个单位圆,然后随意往木板上掷飞镖,
落点坐标必然在木板上(更多的时候是落在单位圆内),
如果掷的次数足够多,那么落在单位圆内的次数除以总次数再乘以4,这个数字会无限逼近圆周率的值。这就是蒙特卡罗发明的用于计算圆周率近似值的方法,如图所示。
(1)计算圆周率近似值
模拟蒙特卡罗计算圆周率近似值的方法,输入掷飞镖次数,然后输出圆周率近似值。
观察实验结果,理解实