python蒙特卡罗方法计算圆周率近似值和定积分

166 篇文章 58 订阅 ¥9.90 ¥99.00
178 篇文章 2 订阅
本文介绍了使用Python的蒙特卡罗方法来计算圆周率的近似值和求解定积分。实验目标包括理解蒙特卡罗方法原理、熟悉Python的输入输出操作以及random模块的使用。通过模拟掷飞镖实验,当次数增加时,计算出的圆周率近似值逐渐接近真实值。同时,应用蒙特卡罗方法求解抛物线y=x^2+1在[3, 9]区间的定积分,结果显示面积近似值为240。" 121562637,8003876,PyTorch训练未收敛问题排查,"['pytorch', '深度学习', '模型训练', '迭代次数', '网络收敛']
摘要由CSDN通过智能技术生成

使用蒙特卡罗方法计算圆周率近似值和定积分

1.实验目的

(1)理解蒙特卡罗方法原理。
(2)熟练使用内置函数input()接收用户输入。
(3)养成对用户输入立即进行类型转换的习惯。
(4)熟练使用for循环控制循环次数。
(5)理解for循环的本质与工作原理。
(6)了解random模块中的常用函数。

2.实验内容

蒙特卡罗方法是一种通过概率统计来得到问题近似解的方法,在很多领域都有重要的应用,其中就包括圆周率近似值的计算问题。假设有一块边长为2的正方形木板,上面画一个单位圆,然后随意往木板上掷飞镖,
落点坐标必然在木板上(更多的时候是落在单位圆内),
如果掷的次数足够多,那么落在单位圆内的次数除以总次数再乘以4,这个数字会无限逼近圆周率的值。这就是蒙特卡罗发明的用于计算圆周率近似值的方法,如图所示。

在这里插入图片描述

(1)计算圆周率近似值

模拟蒙特卡罗计算圆周率近似值的方法,输入掷飞镖次数,然后输出圆周率近似值。
观察实验结果,理解实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

????27282

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值