深度学习第三次实验

NNDL 实验三 线性回归

本次实验是课程深度学习的第三次实验,关于线性回归的简单程序实现,基于上学期机器学习相关知识进行实验。
机器学习(Machine Learning,ML)就是让计算机从数据中进行自动学习,得到某种知识(或规律)。作为一门学科,机器学习通常指一类问题以及解决这类问题的方法,即如何从观测数据(样本)中寻找规律,并利用学习到的规律(模型)对未知或无法观测的数据进行预测。
首先要了解一些线性回归的基础概念

机器学习五要素:

数据集:收集任务相关的数据集用来进行模型训练和测试,可分为训练集、验证集和测试集;
模型:实现输入到输出的映射,通常为可学习的函数;
学习准则:模型优化的目标,通常为损失函数和正则化项的加权组合;
优化算法:根据学习准则优化机器学习模型的参数;
评价指标:用来评价学习到的机器学习模型的性能.

数据

在实践中,数据的质量会很大程度上影响模型最终的性能,通常数据预处理是完成机器学习实践的第一步,噪音越少、规模越大、覆盖范围越广的数据集往往能够训练出性能更好的模型。数据预处理可分为两个环节:先对收集到的数据进行基本的预处理,如基本的统计、特征归一化和异常值处理等;再将数据划分为训练集、验证集(开发集)和测试集

实现一个简单的线性回归模型

数据集构建

在进行实验前先将需要导入的包导入

from matplotlib import pyplot as plt  # matplotlib 是 Python 的绘图库
import torch
import math
from nndl.op import Op
# 我个人的电脑中含有多个conda环境导致运行报错,引入下面代码解决问题
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

假设输入特征和输出标签的维度都为1
真实函数的参数缺省值为 w=1.2,b=0.5

def linear_func(x,w=1.2,b=0.5):
    y = w*x + b
    return y

使用torch.rand()函数来进行随机采样输入特征x,并代入上面函数得到输出标签y.

def create_toy_data(func, interval, sample_num, noise = 0.0, add_outlier = False, outlier_ratio = 0.001):
    '''
    根据给定的函数,生成样本
    输入:
       - func:函数
       - interval: x的取值范围
       - sample_num: 样本数目
       - noise: 噪声均方差
       - add_outlier:是否生成异常值
       - outlier_ratio:异常值占比
    输出:
       - X: 特征数据,shape=[n_samples,1]
       - y: 标签数据,shape=[n_samples,1]
    '''
    # 均匀采样
    # 使用torch.rand在生成sample_num个随机数
    X = torch.rand(size = [sample_num]) * (interval[1]-interval[0]) + interval[0]
    y = func(X)
    # 生成高斯分布的标签噪声
    # 使用torch.normal生成0均值,noise标准差的数据
    epsilon = torch.normal(0,noise,y.shape)
    y = y + epsilon
    if add_outlier:     # 生成额外的异常点
        outlier_num = int(len(y)*outlier_ratio)
        if outlier_num != 0:
            # 使用torch.randint生成服从均匀分布的、范围在[0, len(y))的随机Tensor
            outlier_idx = torch.randint(len(y),size = [outlier_num])
            y[outlier_idx] = y[outlier_idx] * 5
    return X, y

生成样本函数,生成150个带噪音的样本,其中包括100个训练样本,50个测试样本。

func = linear_func
interval = (-10, 10)
train_num = 100 # 训练样本数目
test_num = 50 # 测试样本数目
noise = 2
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise = noise, add_outlier = False)
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise = noise, add_outlier = False)
X_train_large, y_train_large = create_toy_data(func=func, interval=interval, sample_num=5000, noise = noise, add_outlier = False)
# torch.linspace返回一个Tensor,Tensor的值为在区间start和stop上均匀间隔的num个值,输出Tensor的长度为num
X_underlying = torch.linspace(interval[0],interval[1],train_num)
y_underlying = linear_func(X_underlying)

对其进行可视化处理

# 绘制数据
plt.scatter(X_train, y_train, marker='*', facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.scatter(X_test, y_test, facecolor="none", edgecolor='#f19ec2', s=50, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"underlying distribution")
plt.legend(fontsize='x-large')  # 给图像加图例
plt.savefig('ml-vis.pdf') # 保存图像到PDF文件中
plt.show()

运行结果为
在这里插入图片描述

模型构建

构建线性回归模型

torch.manual_seed(10)  # 设置随机种子
# 线性算子
class Linear(Op):
    def __init__(self, input_size):
        """
        输入:
           - input_size:模型要处理的数据特征向量长度
        """
        self.input_size = input_size
        # 模型参数
        self.params = {}
        self.params['w'] = torch.randn(size=[self.input_size, 1], dtype=torch.float32)
        self.params['b'] = torch.zeros(size=[1], dtype=torch.float32)

    def __call__(self, X):
        return self.forward(X)

    # 前向函数
    def forward(self, X):
        """
        输入:
           - X: tensor, shape=[N,D]
           注意这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
        输出:
           - y_pred: tensor, shape=[N]
        """
        N, D = X.shape
        if self.input_size == 0:
            return torch.full(([N, 1]), self.params['b'])

        assert D == self.input_size  # 输入数据维度合法性验证
        # 使用torch.matmul计算两个tensor的乘积
        y_pred = torch.matmul(X, self.params['w']) + self.params['b']
        return y_pred

# 这里的X矩阵是由N个x向量的转置拼接成的
input_size = 3
N = 2
X = torch.randn(N, input_size)  # 生成2个维度为3的数据
model = Linear(input_size)
y_pred = model(X)
print("y_pred:", y_pred)  # 输出结果的个数也是2个

运行结果

y_pred: tensor([[1.8529],
        [0.6011]])

损失函数

回归任务是对连续值的预测,希望模型能根据数据的特征输出一个连续值作为预测值。因此回归任务中常用的评估指标是均方误差。

def mean_squared_error(y_true, y_pred):
    """
    输入:
       - y_true: tensor,样本真实标签
       - y_pred: tensor, 样本预测标签
    输出:
       - error: float,误差值
    """
    assert y_true.shape[0] == y_pred.shape[0]
    # torch.square计算输入的平方值
    # torch.mean沿 axis 计算 x 的平均值,默认axis是None,则对输入的全部元素计算平均值。
    error = torch.mean(torch.square(y_true - y_pred))
    return error

# 构造一个简单的样例进行测试:[N,1], N=2
y_true = torch.tensor([[-0.2], [4.9]], dtype=torch.float32)
y_pred = torch.tensor([[1.3], [2.5]], dtype=torch.float32)
error = mean_squared_error(y_true=y_true, y_pred=y_pred).item()
print("error:", error)

运行结果

error: 4.005000114440918

这里公式中有除以二,而代码中没有除以二,在机器学习损失函数中公式中含有平方,后面会涉及到对其进行求导,会多出一个二,所以公式中除以二以简化求导后的结果,所以是否除以二对最终结果并没有影响。

模型优化

def optimizer_lsm(model, X, y, reg_lambda=0):
    '''
      输入:
         - model: 模型
         - X: tensor, 特征数据,shape=[N,D]
         - y: tensor,标签数据,shape=[N]
         - reg_lambda: float, 正则化系数,默认为0
      输出:
         - model: 优化好的模型
      '''
    N, D = X.shape
    # 对输入特征数据所有特征向量求平均
    x_bar_tran = torch.mean(X,0).T
    # 求标签的均值,shape=[1]
    y_bar = torch.mean(y)
    # torch.subtract通过广播的方式实现矩阵减向量
    x_sub = torch.subtract(X, x_bar_tran)
    # 使用torch.all判断输入tensor是否全0
    if torch.all(x_sub == 0):
        model.params['b'] = y_bar
        model.params['w'] = torch.zeros([D])
        return model

    # torch.inverse求方阵的逆
    tmp = torch.inverse(torch.matmul(x_sub.T, x_sub) +
                         reg_lambda * torch.eye(D))
    w = torch.matmul(torch.matmul(tmp, x_sub.T), (y - y_bar))
    b = y_bar - torch.matmul(x_bar_tran, w)
    model.params['b'] = b
    model.params['w'] = torch.squeeze(w, -1)
    return model

省略N对结果并不影响,因为这里的1是N维的全1向量。

最小二乘法:最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小 。
最小二乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

模型训练

在准备了数据、模型、损失函数和参数学习的实现之后,我们开始模型的训练。在回归任务中,模型的评价指标和损失函数一致,都为均方误差,通过上文实现的线性回归类来拟合训练数据,并输出模型在训练集上的损失。

input_size = 1
model = Linear(input_size)
model = optimizer_lsm(model,X_train.reshape([-1,1]),y_train.reshape([-1,1]))
print("w_pred:", model.params['w'].item(), "b_pred: ", model.params['b'].item())
y_train_pred = model(X_train.reshape([-1,1])).squeeze()
train_error = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
print("train error: ", train_error)

运行结果

w_pred: 1.2271720170974731 b_pred:  0.37986236810684204
train error:  3.632181406021118
model_large = Linear(input_size)
model_large = optimizer_lsm(model_large,X_train_large.reshape([-1,1]),y_train_large.reshape([-1,1]))
print("w_pred large:",model_large.params['w'].item(), "b_pred large: ", model_large.params['b'].item())
y_train_pred_large = model_large(X_train_large.reshape([-1,1])).squeeze()
train_error_large = mean_squared_error(y_true=y_train_large, y_pred=y_train_pred_large).item()
print("train error large: ",train_error_large)

运行结果

w_pred large: 1.1993682384490967 b_pred large:  0.5421561002731323
train error large:  3.9921984672546387

从输出结果看,预测结果与真实值w=1.2,b=0.5有一定的差距。

模型评估

下面用训练好的模型预测一下测试集的标签,并计算在测试集上的损失

y_test_pred = model(X_test.reshape([-1,1])).squeeze()
test_error = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
print("test error: ",test_error)

运行结果

test error:  4.306798458099365
y_test_pred_large = model_large(X_test.reshape([-1,1])).squeeze()
test_error_large = mean_squared_error(y_true=y_test, y_pred=y_test_pred_large).item()
print("test error large: ",test_error_large)
test error large:  4.420894622802734

动手练习:

为了加深对机器学习模型的理解,请自己动手完成以下实验:

(1) 调整训练数据的样本数量,由 100 调整到 5000,观察对模型性能的影响。

(2) 调整正则化系数,观察对模型性能的影响。

多项式回归

数据集的构建
# sin函数: sin(2 * pi * x)
def sin(x):
    y = torch.sin(2 * math.pi * x)
    return y

这里仍然使用前面定义的create_toy_data函数来构建训练和测试数据,其中训练数样本 15 个,测试样本 10 个,高斯噪声标准差为 0.1,自变量范围为 (0,1)。

# 生成数据
func = sin
interval = (0, 1)
train_num = 15
test_num = 10
noise = 0.5  # 0.1
X_train, y_train = create_toy_data(func=func, interval=interval, sample_num=train_num, noise=noise)
X_test, y_test = create_toy_data(func=func, interval=interval, sample_num=test_num, noise=noise)
X_underlying = torch.linspace(interval[0], interval[1], 100)
y_underlying = sin(X_underlying)
# 绘制图像
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.scatter(X_train, y_train, facecolor="none", edgecolor='#e4007f', s=50, label="train data")
plt.scatter(X_test, y_test, facecolor="none", edgecolor="b", s=50, label="test data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.legend(fontsize='x-large')
plt.savefig('ml-vis2.pdf')
plt.show()

输出结果
在这里插入图片描述

模型构建
# 多项式转换
def polynomial_basis_function(x, degree=2):
    """
    输入:
       - x: tensor, 输入的数据,shape=[N,1]
       - degree: int, 多项式的阶数
       example Input: [[2], [3], [4]], degree=2
       example Output: [[2^1, 2^2], [3^1, 3^2], [4^1, 4^2]]
       注意:本案例中,在degree>=1时不生成全为1的一列数据;degree为0时生成形状与输入相同,全1的Tensor
    输出:
       - x_result: tensor
    """
    if degree == 0:
        # x = torch.ones(x.shape)
        # x = x.to(torch.float32)
        # return x
        return torch.ones(x.shape)
    x_tmp = x
    x_result = x_tmp
    for i in range(2, degree + 1):
        x_tmp = torch.multiply(x_tmp, x)  # 逐元素相乘
        x_result = torch.concat((x_result, x_tmp), dim=-1)
    return x_result

# 简单测试
data = [[2], [3], [4]]
X = torch.tensor(data=data)
X = X.to(torch.float32)
degree = 3
transformed_X = polynomial_basis_function(X, degree=degree)
print("转换前:", X)
print("阶数为", degree, "转换后:", transformed_X)

运行结果

转换前: tensor([[2.],
        [3.],
        [4.]])
阶数为 3 转换后: tensor([[ 2.,  4.,  8.],
        [ 3.,  9., 27.],
        [ 4., 16., 64.]])
模型训练
plt.rcParams['figure.figsize'] = (12.0, 8.0)

for i, degree in enumerate([0, 1, 3, 8]):  # []中为多项式的阶数
    model = Linear(degree)
    X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), degree)
    X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), degree)
    model = optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))  # 拟合得到参数
    y_underlying_pred = model(X_underlying_transformed).squeeze()
    print(model.params)

    # 绘制图像
    plt.subplot(2, 2, i + 1)
    plt.scatter(X_train, y_train, facecolor="none", edgecolor='#e4007f', s=50, label="train data")
    plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
    plt.plot(X_underlying, y_underlying_pred, c='#f19ec2', label="predicted function")
    plt.ylim(-2, 1.5)
    plt.annotate("M={}".format(degree), xy=(0.95, -1.4))

# plt.legend(bbox_to_anchor=(1.05, 0.64), loc=2, borderaxespad=0.)
plt.legend(loc='lower left', fontsize='x-large')
plt.savefig('ml-vis3.pdf')
plt.show()

运行结果
在这里插入图片描述

{'w': tensor([0.]), 'b': tensor(-0.1441)}
{'w': tensor([-0.9384]), 'b': tensor([0.3150])}
{'w': tensor([ 12.5144, -34.8418,  23.1784]), 'b': tensor([-0.3165])}
{'w': tensor([ 3.7056e+00,  2.0793e+02, -1.7501e+03,  5.1039e+03, -5.8384e+03,
         4.3806e+02,  3.8396e+03, -2.0028e+03]), 'b': tensor([-1.5398])}

观察可视化结果,红色的曲线表示不同阶多项式分布拟合数据的结果:
当 M=0 或 M=1 时,拟合曲线较简单,模型欠拟合;
当 M=8 时,拟合曲线较复杂,模型过拟合;
当 M=3 时,模型拟合最为合理。

模型评估
# 训练误差和测试误差
training_errors = []
test_errors = []
distribution_errors = []

# 遍历多项式阶数
for i in range(9):
    model = Linear(i)

    X_train_transformed = polynomial_basis_function(X_train.reshape([-1, 1]), i)
    X_test_transformed = polynomial_basis_function(X_test.reshape([-1, 1]), i)
    X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1, 1]), i)

    optimizer_lsm(model, X_train_transformed, y_train.reshape([-1, 1]))

    y_train_pred = model(X_train_transformed).squeeze()
    y_test_pred = model(X_test_transformed).squeeze()
    y_underlying_pred = model(X_underlying_transformed).squeeze()

    train_mse = mean_squared_error(y_true=y_train, y_pred=y_train_pred).item()
    training_errors.append(train_mse)

    test_mse = mean_squared_error(y_true=y_test, y_pred=y_test_pred).item()
    test_errors.append(test_mse)

    # distribution_mse = mean_squared_error(y_true=y_underlying, y_pred=y_underlying_pred).item()
    # distribution_errors.append(distribution_mse)

print("train errors: \n", training_errors)
print("test errors: \n", test_errors)
# print ("distribution errors: \n", distribution_errors)

# 绘制图片
plt.rcParams['figure.figsize'] = (8.0, 6.0)
plt.plot(training_errors, '-.', mfc="none", mec='#e4007f', ms=10, c='#e4007f', label="Training")
plt.plot(test_errors, '--', mfc="none", mec='#f19ec2', ms=10, c='#f19ec2', label="Test")
# plt.plot(distribution_errors, '-', mfc="none", mec="#3D3D3F", ms=10, c="#3D3D3F", label="Distribution")
plt.legend(fontsize='x-large')
plt.xlabel("degree")
plt.ylabel("MSE")
plt.savefig('ml-mse-error.pdf')
plt.show()

运行结果
在这里插入图片描述

train errors: 
 [0.49659356474876404, 0.3854281008243561, 0.38537195324897766, 0.2073555439710617, 0.1958308219909668, 0.19370171427726746, 0.7928376793861389, 0.3426400125026703, 2.5518805980682373]
test errors: 
 [1.1408350467681885, 0.8089733123779297, 0.8042014837265015, 0.4072621464729309, 0.37220802903175354, 0.3991769850254059, 1.669513463973999, 0.8297686576843262, 3.1271579265594482]

观察可视化结果:
当阶数较低的时候,模型的表示能力有限,训练误差和测试误差都很高,代表模型欠拟合;
当阶数较高的时候,模型表示能力强,但将训练数据中的噪声也作为特征进行学习,一般情况下训练误差继续降低而测试误差显著升高,代表模型过拟合。

对于模型过拟合的情况,可以引入正则化方法,通过向误差函数中添加一个惩罚项来避免系数倾向于较大的取值。下面加入l2正则化项,查看拟合结果。

degree = 8 # 多项式阶数
reg_lambda = 0.0001 # 正则化系数
X_train_transformed = polynomial_basis_function(X_train.reshape([-1,1]), degree)
X_test_transformed = polynomial_basis_function(X_test.reshape([-1,1]), degree)
X_underlying_transformed = polynomial_basis_function(X_underlying.reshape([-1,1]), degree)
model = Linear(degree)

optimizer_lsm(model,X_train_transformed,y_train.reshape([-1,1]))
y_test_pred=model(X_test_transformed).squeeze()
y_underlying_pred=model(X_underlying_transformed).squeeze()
model_reg = Linear(degree)

optimizer_lsm(model_reg,X_train_transformed,y_train.reshape([-1,1]),reg_lambda=reg_lambda)
y_test_pred_reg=model_reg(X_test_transformed).squeeze()
y_underlying_pred_reg=model_reg(X_underlying_transformed).squeeze()
mse = mean_squared_error(y_true = y_test, y_pred = y_test_pred).item()
print("mse:",mse)

mes_reg = mean_squared_error(y_true = y_test, y_pred = y_test_pred_reg).item()
print("mse_with_l2_reg:",mes_reg)
# 绘制图像
plt.scatter(X_train, y_train, facecolor="none", edgecolor="#e4007f", s=50, label="train data")
plt.plot(X_underlying, y_underlying, c='#000000', label=r"$\sin(2\pi x)$")
plt.plot(X_underlying, y_underlying_pred, c='#e4007f', linestyle="--", label="$deg. = 8$")
plt.plot(X_underlying, y_underlying_pred_reg, c='#f19ec2', linestyle="-.", label="$deg. = 8, \ell_2 reg$")
plt.ylim(-1.5, 1.5)
plt.annotate("lambda={}".format(reg_lambda), xy=(0.82, -1.4))
plt.legend(fontsize='large')
plt.savefig('ml-vis4.pdf')
plt.show()

运行结果
在这里插入图片描述

mse: 3.1271579265594482
mse_with_l2_reg: 0.3700985610485077

Runner类介绍

机器学习方法流程包括数据集构建、模型构建、损失函数定义、优化器、模型训练、模型评价、模型预测等环节。
为了更方便地将上述环节规范化,我们将机器学习模型的基本要素封装成一个Runner类。
除上述提到的要素外,再加上模型保存、模型加载等功能。

Runner类的成员函数定义如下:
__init__函数:实例化Runner类,需要传入模型、损失函数、优化器和评价指标等;
train函数:模型训练,指定模型训练需要的训练集和验证集;
evaluate函数:通过对训练好的模型进行评价,在验证集或测试集上查看模型训练效果;
predict函数:选取一条数据对训练好的模型进行预测;
save_model函数:模型在训练过程和训练结束后需要进行保存;
load_model函数:调用加载之前保存的模型。

# Runner类
class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric):
        self.model = model         # 模型
        self.optimizer = optimizer # 优化器
        self.loss_fn = loss_fn     # 损失函数   
        self.metric = metric       # 评估指标
    # 模型训练
    def train(self, train_dataset, dev_dataset=None, **kwargs):
        pass
    # 模型评价
    def evaluate(self, data_set, **kwargs):
        pass
    # 模型预测
    def predict(self, x, **kwargs):
        pass
    # 模型保存
    def save_model(self, save_path):
        pass
    # 模型加载
    def load_model(self, model_path):
        pass

基于线性回归的波士顿房价预测

提前给出导入的包

import pandas as pd  # 开源数据分析和操作工具
import matplotlib.pyplot as plt  # 可视化工具
import torch
from nndl.op import Linear
import torch.nn as nn
from nndl.opitimizer import optimizer_lsm
# 我个人的电脑中含有多个conda环境导致运行报错,引入下面代码解决
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
数据处理
# 提前下载boston数据集
data = pd.read_csv('boston.csv')
数据清洗
print(data.head())
# 查看各字段缺失值统计情况
print(data.isna().sum())

运行结果

      CRIM    ZN  INDUS  CHAS    NOX  ...  TAX  PTRATIO       B  LSTAT  MEDV
0  0.00632  18.0   2.31     0  0.538  ...  296     15.3  396.90   4.98  24.0
1  0.02731   0.0   7.07     0  0.469  ...  242     17.8  396.90   9.14  21.6
2  0.02729   0.0   7.07     0  0.469  ...  242     17.8  392.83   4.03  34.7
3  0.03237   0.0   2.18     0  0.458  ...  222     18.7  394.63   2.94  33.4
4  0.06905   0.0   2.18     0  0.458  ...  222     18.7  396.90   5.33  36.2
[5 rows x 14 columns]
CRIM       0
ZN         0
INDUS      0
CHAS       0
NOX        0
RM         0
AGE        0
DIS        0
RAD        0
TAX        0
PTRATIO    0
B          0
LSTAT      0
MEDV       0
dtype: int64

从输出结果看,波士顿房价预测数据集中不存在缺失值的情况。
若存在缺失值还需要对缺失值进行处理,将缺失数据视为噪声,将其使用临界值取代。

数据集划分

将数据集划分为两份:训练集和测试集

torch.manual_seed(10)  # 随机种子

# 划分训练集和测试集
def train_test_split(X, y, train_percent=0.8):
    n = len(X)
    shuffled_indices = torch.randperm(n)  # 返回一个数值在0到n-1、随机排列的1-D Tensor
    train_set_size = int(n * train_percent)
    train_indices = shuffled_indices[:train_set_size]
    test_indices = shuffled_indices[train_set_size:]

    X = X.values
    y = y.values
    X_train = X[train_indices]
    y_train = y[train_indices]
    X_test = X[test_indices]
    y_test = y[test_indices]

    return X_train, X_test, y_train, y_test

X = data.drop(['MEDV'], axis=1)
y = data['MEDV']

X_train, X_test, y_train, y_test = train_test_split(X, y)  # X_train每一行是个样本,shape[N,D]
特征工程
X_train = torch.tensor(X_train)
X_train = X_train.to(torch.float32)
X_test = torch.tensor(X_test)
X_train = X_train.to(torch.float32)
y_train = torch.tensor(y_train)
X_train = X_train.to(torch.float32)
y_test = torch.tensor(y_test)
X_train = X_train.to(torch.float32)
X_min = torch.min(X_train)
X_max = torch.max(X_train)
X_train = (X_train-X_min)/(X_max-X_min)
X_test = (X_test-X_min)/(X_max-X_min)
# 训练集构造
train_dataset = (X_train, y_train)
# 测试集构造
test_dataset = (X_test, y_test)
模型构建

实例化一个线性回归模型,特征维度为 12:

# 模型实例化
input_size = 12
model=Linear(input_size)
完善Runner类

具体可参考文末链接

class Runner(object):
    def __init__(self, model, optimizer, loss_fn, metric):
        # 优化器和损失函数为None,不再关注
        # 模型
        self.model = model
        # 评估指标
        self.metric = metric
        # 优化器
        self.optimizer = optimizer

    def train(self, dataset, reg_lambda, model_dir):
        X, y = dataset
        self.optimizer(self.model, X, y, reg_lambda)

        # 保存模型
        self.save_model(model_dir)

    def evaluate(self, dataset, **kwargs):
        X, y = dataset

        y_pred = self.model(X)
        result = self.metric(y_pred, y)

        return result

    def predict(self, X, **kwargs):
        return self.model(X)

    def save_model(self, model_dir):
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)

        params_saved_path = os.path.join(model_dir, 'params.pdtensor')
        torch.save(model.params, params_saved_path)

    def load_model(self, model_dir):
        params_saved_path = os.path.join(model_dir, 'params.pdtensor')
        self.model.params = torch.load(params_saved_path)

optimizer = optimizer_lsm
# 实例化Runner
runner = Runner(model, optimizer=optimizer, loss_fn=None, metric=mse_loss)
模型训练

在组装完成Runner之后,我们将开始进行模型训练、评估和测试。首先,我们先实例化Runner,然后开始进行装配训练环境,接下来就可以开始训练

# 模型保存到文件夹中
saved_dir = 'pythonPoject2'
# 启动训练
runner.train(train_dataset, reg_lambda=0, model_dir=saved_dir)

打印出训练得到的权重:

columns_list = data.columns.to_list()
weights = runner.model.params['w'].tolist()
b = runner.model.params['b'].item()
for i in range(len(weights)):
    print(columns_list[i], "weight:", weights[i])

print("b:", b)

运行结果

CRIM weight: -6.7268967628479
ZN weight: 1.28081214427948
INDUS weight: -0.4696650803089142
CHAS weight: 2.235346794128418
NOX weight: -7.0105814933776855
RM weight: 9.76220417022705
AGE weight: -0.8556219339370728
DIS weight: -9.265738487243652
RAD weight: 7.973038673400879
TAX weight: -4.365403175354004
PTRATIO weight: -7.105883598327637
LSTAT weight: -13.165120124816895
b: 32.12007522583008

从输出结果看,CRIM、PTRATIO等的权重为负数,表示人均犯罪率与房价呈负相关,学生与教师比例越大,房价越低;
RAD和CHAS等为正,表示到径向公路的可达性指数越高,房价越高;临近Charles River房价高。
(此实验我使用的boston数据集为私人在网上下载的数据集,其中的大部分数据与实验例题中数据集数据差不多,但也有不同,从而导致某些数据不同)

模型测试

加载训练好的模型参数,在测试集上得到模型的MSE指标

# 加载模型权重
runner.load_model(saved_dir)

mse = runner.evaluate(test_dataset)
print('MSE:', mse.item())

运行结果

MSE: 12.345974922180176
模型预测

使用predict进行模型预测

runner.load_model(saved_dir)
pred = runner.predict(X_test[:1])
print("真实房价:",y_test[:1].item())
print("预测的房价:",pred.item())

运行结果

真实房价: 33.099998474121094
预测的房价: 33.04654312133789

从此结果来看,预测房价于实际值较接近,模型训练较准确。

问题1:使用类实现机器学习模型的基本要素有什么优点?
问题2:算子op、优化器opitimizer放在单独的文件中,主程序在使用时调用该文件。这样做有什么优点?
问题3:线性回归通常使用平方损失函数,能否使用交叉熵损失函数?为什么?

1.简单,易于理解,易于实现,无需估计参数,无需训练;理论成熟,既可以用来做分类也可以用来做回归;可用于非线性分类;适合对稀有事件进行分类;准确度高,对数据没有假设;

2.算子op、优化器opitimizer单独放在文件中进行调用,在调用时比较方便,调用简单,不易错;

3.平方损失函数与交叉熵损失函数都可以用作为机器学习模型的目标函数,从平方损失函数运用到多分类场景下,可知平方损失函数对每一个输出结果都十分看重,而交叉熵损失函数只对正确分类的结果看重;交叉熵损失函数只和分类正确的预测结果有关,而平方损失函数还和错误的分类有关;平方损失函数多运用于连续变量,而交叉熵损失函数多运用于离散变量。

实验感悟:本次实验是关于线性回归与波士顿房价预测,本以为在上学期学习过机器学期的情况下应该很容易解决,但事实并非如此,真正下手后发现自己去写根本无从下手,对于线性回归中训练模型没有具体的思路,最终只能是参考老师所给出的实例去做,说明对于这方面的知识还太薄弱,后面要多加练习。

参考:飞桨AI Studio,博客园1博客园2
深度学习魏老师csdn主页:https://blog.csdn.net/qq_38975453?type=blog

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值