Scrapy初步使用二

本文详细介绍了在Scrapy项目中如何设置日志级别,拒绝协议,添加请求头伪装,配置数据管道以及使用CaipiaoPipeline处理数据。包括items.py中的数据结构定义和parse()函数中的网页爬取内容,以及pipelines.py中的数据接收和打印方法。
摘要由CSDN通过智能技术生成

本章主要介绍数据管道使用方法,创建好Scrapy项目后进行设置,加入下面代码减少过的的日志打印

LOG_LEVEL = "WARNING" 

拒绝协议

ROBOTSTXT_OBEY = False

加入请求头伪装一下

DEFAULT_REQUEST_HEADERS = {
   "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
   "Accept-Language": "en",
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3",

}

配置数据管道

ITEM_PIPELINES = {
   "caipiao.pipelines.CaipiaoPipeline": 300,
}

打开items.py文件进行数据配置,这里的配置类似于数据库建表后的字段配置

class CaipiaoItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    qihao = scrapy.Field()
    red_balls = scrapy.Field()
    blue_balls = scrapy.Field()

导入

from caipiao.items import CaipiaoItem

配置好之后就可以接收数据了,下面是网页爬取的双色球数据

    def parse(self, response, **kwargs):
        trs = response.xpath("//tbody[@id='tdata']/tr")
        for tr in trs:
            qihao = tr.xpath("./td[@align='center']/text()").extract()
            red_balls = tr.xpath("./td[@class='chartBall01']/text()").extract()
            blue_balls = tr.xpath("./td[@class='chartBall02']/text()").extract()

            cai = CaipiaoItem()
            cai["qihao"] = qihao
            cai["red_balls"] = red_balls
            cai["blue_balls"] = blue_balls
            yield cai

接收后可以在pipelines.py文件中打印出来

class CaipiaoPipeline:
    def process_item(self, item, spider):
        print(item)
        return item

运行start.py文件就行了

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值