第一题:
信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)http://ybt.ssoier.cn:8088/problem_show.php?pid=2004
思路
小技巧:如果这个数是奇数,那么一定不可能满足题目条件,因为 2 的正整数次幂一定都是偶数
如果这个数是偶数,那么一定可以满足题目条件,那么我们只需要依次减去离当前剩余数最接近的 2 的尽可能大次幂的数,也就是说如果当前数为 26,那么我们减掉 16,当前数变为 26 - 16 = 10,然后我们减掉 8,当前数变为 10 - 8 = 2,然后我们减掉 2,当前数变为 0,那么我们的答案就是 16 8 2
为什么说偶数一定满足条件呢?我们来证明一下
我们都知道任意一个正整数都可以用二进制来表示,当二进制表示下,最低位也就是最右边的一位,如果是 1,那么这个数是奇数,否则是偶数,也就是说对于所有的奇数,二进制表示下最低位都是 1,对于所有的偶数,二进制表示下最低位都是 0;也就是说如果我们把最低位置为 0,那么我们就可以用二进制来表示所有的偶数,所以偶数一定满足题目条件
100分代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
void solve() {
int n;
cin >> n;
if(n % 2 == 1) cout << -1 << endl;
else {
vector<int> ans;
for(int i = 30; i >= 1; i--)
if(n >= pow(2, i)) {
ans.push_back(pow(2, i));
n -= pow(2, i);
}
if(n) cout << -1 << endl;
else {
for(int i = 0; i < ans.size(); i++) cout << ans[i] << " ";
cout << endl;
}
}
}
signed main() {
int _ = 1;// cin >> _;
while(_--) solve();
return 0;
}
第二题:
信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)http://ybt.ssoier.cn:8088/problem_show.php?pid=2005
思路
第一种思路:每次读入我们都重新计算当前计划获奖人数,也就是
int k = (i + 1) * w / 100; int p = max(1ll, k);
依次将读入的数放入动态数组 res 里面,进行排序,输出 res[res.size() - p] 即为正确答案
res.push_back(a[i]); sort(res.begin(), res.end()); cout << res[res.size() - p] << " ";
此方法必定超时,时间复杂度太大
65分代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e5 + 10;
int n, w;
int a[N];
void solve() {
vector<int> res;
cin >> n >> w;
for(int i = 0; i < n; i++) {
cin >> a[i];
int k = (i + 1) * w / 100;
int p = max(1ll, k);
res.push_back(a[i]);
sort(res.begin(), res.end());
cout << res[res.size() - p] << " ";
}
cout << endl;
}
signed main() {
int _ = 1;// cin >> _;
while(_--) solve();
return 0;
}
我们注意到,每个选手的成绩均为不大于 600 的非负整数,那么我们只需要统计每个分数出现的次数,然后按分数从大到小计算出现次数的总和即可
for(int j = 600; j >= 0; j--) { res += cnt[j]; if(res >= p) { printf("%lld ", j); break; } }
TIPS:输入输出使用 scanf, printf
100分代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e5 + 10;
int n, w;
int a[N], cnt[610];
void solve() {
cin >> n >> w;
for(int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
int k = (i + 1) * w / 100;
int p = max(1ll, k);
cnt[a[i]]++;
int res = 0;
for(int j = 600; j >= 0; j--) {
res += cnt[j];
if(res >= p) {
printf("%lld ", j);
break;
}
}
}
cout << endl;
}
signed main() {
int _ = 1;// cin >> _;
while(_--) solve();
return 0;
}
第三题:
信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)http://ybt.ssoier.cn:8088/problem_show.php?pid=2006
太难,放弃
第四题:
信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)http://ybt.ssoier.cn:8088/problem_show.php?pid=2007
思路
因为每一步可以向上、向下或向右走一格,所以我们不能像以前简单的动态规划一样进行更新,因为先枚举行后枚举列的话,向上的那一步并不能被实现或更新。
我们需要先枚举列后枚举行,对于每一列,枚举行的时候需要进行两遍遍历,一边是从上到下,一遍是从下到上
100分代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e3 + 10;
int d[N][N][2];//表示走到i j 采用 向右或向下 和 向右或向上 其中一种方法的最值。
int a[N][N];
int n, m;
int maxn(int a, int b, int c){
return max(a, max(b, c));
}
void solve(){
cin >> n >> m;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
cin >> a[i][j];
memset(d, -0x3f, sizeof d);
d[1][1][0] = d[1][1][1] = a[1][1];
for(int j = 1; j <= m; j ++){
for(int i = 1; i <= n; i ++){
if(i * j == 1) continue;
d[i][j][0] = maxn(d[i - 1][j][0], d[i][j - 1][0], d[i][j - 1][1]) + a[i][j];
}
for(int i = n; i >= 1; i --){
d[i][j][1] = maxn(d[i + 1][j][1], d[i][j - 1][0], d[i][j - 1][1]) + a[i][j];
}
}
cout << max(d[n][m][0], d[n][m][1]) << endl;
}
signed main() {
int _ = 1;// cin >> _;
while(_--) solve();
return 0;
}