43.二叉树的深度
题目:
输入一棵二叉树的根节点,求该树的深度。从根节点到叶节点依次经过的节点(含根、叶节点)形成树的一条路径,最长路径的长度为树的深度。
题解:
- 思想:某一节点的最大深度是其左右子树最大深度的最大值加1;
- 递归结束的条件
节点为null
; - 未达到递归条件
- 递归的调用maxDepth函数,返回其左右子树深度的最大值+1。
public int maxDepth(TreeNode root) {
if (root == null)
return 0;
return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
}
44.平衡二叉树
题目:
输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
题解:
- 递归结束的条件
节点为null
返回true; - 未达到递归条件
- 首先判断该节点是否满足条件即
Math.abs(maxDepth(root.left) - maxDepth(root.right)) <= 1
; - 再判断左右子树是否为平衡二叉树即
sBalanced(root.left) && isBalanced(root.right);
- 首先判断该节点是否满足条件即
- 只有三者均为true时,才证明是平衡二叉树。
public boolean isBalanced(TreeNode root) {
if (root == null) return true;
return Math.abs(maxDepth(root.left) - maxDepth(root.right)) <= 1 && isBalanced(root.left) && isBalanced(root.right);
}
public int maxDepth(TreeNode root) {
if (root == null)
return 0;
return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1;
}
体验过程、追求结果才配得上这一路的颠沛流离,2022年于我必然是颠沛流离的一年。