我主要参考了下面这篇博客的做法:
在实践的过程中,我在其它博客里看到torchvision.datasets.FashionMNIST()的参数download=True代表了“目录下没有文件则自动下载”,但是我以为我指定的dataset目录下有那4个gz文件就已经算作目录下有文件了,所以最初尝试时把download参数指定成False了,但是这个时候程序报错说Dataset not found,然后我就继续把download又改成了True,然后十来秒的时间吧,数据集就加载完成了。
我的代码如下,供以参考:
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
if __name__ == '__main__':
# 数据预处理
transform = transforms.Compose([
# 将28x28的Fashion-MNIST图像放大到224x224
transforms.Resize((224, 224)),
# 将输入的数据shape: [W, H, C]转化为[C, W, H],并将所有数除以255从而将数据归一化到[0, 1]
transforms.ToTensor(),
# 标准化图像数据,使得灰度数据更集中、模型更容易收敛
transforms.Normalize((0.5, ), (0.5, ))
])
# 加载Fashion-MNIST训练集数据
train_dataset = datasets.FashionMNIST(root='D://NewProjects//PyCharm//zsk//1fashmnist_alexnet//dataset', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
# 加载Fashion-MNIST测试集数据
test_dataset = datasets.FashionMNIST(root='D://NewProjects//PyCharm//zsk//1fashmnist_alexnet//dataset', train=False, transform=transform, download=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=True)