11非比较排序算法---计数排序

本文详细介绍了计数排序的基本原理和实现方法,该算法适用于范围集中的整数数组,通过统计每个元素出现的次数进行排序。计数排序的时间复杂度为O(N+range),空间复杂度为O(range)。尽管存在空间浪费的问题,但在特定场景下,如数据范围相对集中时,其效率较高。然而,由于无法处理浮点数和大范围数值,因此适用性有限。
摘要由CSDN通过智能技术生成

基数排序、计数排序都属于非比较排序。


一、计数排序

在这里插入图片描述

这种排序方法并不需要比较数组中的元素大小来排顺序,而是用一个数组直接统计每个数出现的次数,然后从小到大遍历这个数组就可以了。
在这里插入图片描述

不过这样有很大的浪费,数组中最大的元素是max,count数组的元素个数就得是max+1,比如一个数组[200,199,201],count数组的元素个数就是202,但是199前面的空间都没有用。这个时候如果让数组中最小值充当count数组中的0下标,数组中的最大值就相对于count数组中的最后一个下标。就可以节省很多空间,这样只需要开辟3个整形大小的数组count即可。

另外,计数排序注无法排序浮点型,因为数组的下标不能是浮点数。对于最大值和最小值差值比较大的数组(范围分散的数组)比如[1,99,1000]这种的,则会造成很大的空间浪费,不推荐使用这种方法。推荐差值较小的数组(范围集中的数组)使用这种方法。

//计数排序:适用范围具有局限性
void CountSort(int* a, int n)
{
	int max = a[0], min = a[0];
	for (int i = 0; i < n; i++)//求出最大和最小的数
	{
		if (a[i] > max)
		{
			max = a[i];
		}
		if (a[i] < min)
		{
			min = a[i];
		}
	}
	int range = max - min + 1;//开辟的个数是最大值和最小值的差+1
	int* count = (int*)malloc(sizeof(int) * range);
	if (count == NULL)
	{
		exit(-1);
	}
	memset(count, 0, sizeof(int) * range);//将count的内容初始化成0
	//统计次数
	for (int i =0 ; i < n; i++)
	{
		count[a[i]-min]++;
	}
	int j = 0;
	for (int i = 0; i < range; i++)//根据统计结果将count数组的下标赋值到原来的数组
	{
		while (count[i]--)
		{
			a[j++] = i + min;
		}
	}
	free(count);
}

1.1.时间空间复杂度分析

一共三层for循环2n+range,所以时间复杂度为:O(N+range)
所以这种排序方法对于范围集中的数组排序的效率更高。
开辟大小为range的数组,因此空间复杂度为O(range)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今天也要写bug、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值