基数排序、计数排序都属于非比较排序。
文章目录
一、计数排序
这种排序方法并不需要比较数组中的元素大小来排顺序,而是用一个数组直接统计每个数出现的次数,然后从小到大遍历这个数组就可以了。
不过这样有很大的浪费,数组中最大的元素是max,count数组的元素个数就得是max+1,比如一个数组[200,199,201],count数组的元素个数就是202,但是199前面的空间都没有用。这个时候如果让数组中最小值充当count数组中的0下标,数组中的最大值就相对于count数组中的最后一个下标。就可以节省很多空间,这样只需要开辟3个整形大小的数组count即可。
另外,计数排序注无法排序浮点型,因为数组的下标不能是浮点数。对于最大值和最小值差值比较大的数组(范围分散的数组)比如[1,99,1000]这种的,则会造成很大的空间浪费,不推荐使用这种方法。推荐差值较小的数组(范围集中的数组)使用这种方法。
//计数排序:适用范围具有局限性
void CountSort(int* a, int n)
{
int max = a[0], min = a[0];
for (int i = 0; i < n; i++)//求出最大和最小的数
{
if (a[i] > max)
{
max = a[i];
}
if (a[i] < min)
{
min = a[i];
}
}
int range = max - min + 1;//开辟的个数是最大值和最小值的差+1
int* count = (int*)malloc(sizeof(int) * range);
if (count == NULL)
{
exit(-1);
}
memset(count, 0, sizeof(int) * range);//将count的内容初始化成0
//统计次数
for (int i =0 ; i < n; i++)
{
count[a[i]-min]++;
}
int j = 0;
for (int i = 0; i < range; i++)//根据统计结果将count数组的下标赋值到原来的数组
{
while (count[i]--)
{
a[j++] = i + min;
}
}
free(count);
}
1.1.时间空间复杂度分析
一共三层for循环2n+range,所以时间复杂度为:O(N+range)
所以这种排序方法对于范围集中的数组排序的效率更高。
开辟大小为range的数组,因此空间复杂度为O(range)