文章目录
A R
题意:计算符合的子串的个数,满足字串不含有字符’P’,且至少有k个’R’
思路:
1. 不能有P,所以选定区间必定在2个P之间(或第一个P之前,最后一个P之后)
2. 双指针(枚举左端点i,右端点j一直向后,维护区间内有K个R(这里用前缀和维护,易懂))
string tmp = "";
int n, k, ans;
int a[N];
void get() {
// 初始化,差分数组a
for (int i = 0; i < tmp.sz + 1; i++) a[i] = 0;
for (int i = 0; i < tmp.sz; i++) {
if(tmp[i] == 'R') a[i + 1] ++; // 标记R
a[i + 1] += a[i]; // 拉前缀和
}
int j = 0; // i枚举左端点, j表示右端点
for (int i = 0; i < tmp.sz; i++) {
// i ~ j 之间不够k个R, --->>> j++
while(j < tmp.sz && a[j + 1] - a[i] < k) j++;
if(a[j + 1] - a[i] >= k) ans += tmp.sz - j;
}
}
void solve() {
cin >> n >> k;
string s; cin >> s;
rep(i, 0, s.sz) {
if(s[i] == 'P') get(), tmp = "";
else tmp += s[i];
}
get(); // 结尾需要一次
cout << ans << endl;
}
B 进制
C 蓝彗星
题意:给定蓝(B),红(R)彗星,每个彗星会持续t秒,求只看见蓝彗星的时间。
思路:
1. 开两个差分数组,前缀和算出蓝红彗星会存在的时间。
int preb[N], prer[N];
void solve() {
int n, t; cin >> n >> t;
string s; cin >> s;
rep(i, 0, s.sz) {
int x; cin >> x;
if(s[i] == 'B') preb[x]++, preb[x + t]--;
else prer[x]++, prer[x + t]--;
}
rep(i, 1, N) preb[i] += preb[i - 1], prer[i] += prer[i - 1];
int ans = 0;
rep(i, 1, N) if(preb[i] && !prer[i]) ans++;
cout << ans << endl;
}
D 雪色光晕
题意:
有一个动点 (x0,y0)和一个不动点(x,y),接下来n 个单位时间,每个单位时间该动点会从当前位置(x0,y0) 移动到 (x0+xi,y0+yi),问过程中动点与不动点的最短距离。
以下是一位大佬的板子,Orz!
#include <bits/stdc++.h>
using namespace std;
template <typename T>
inline void scan(T& x) {
x = 0; int f = 1; char ch = getchar();
while(!isdigit(ch)) {if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) {x = x * 10 + ch - '0', ch = getchar();}
x *= f;
}
template <typename T>
void print(T x) {
if(x < 0) putchar('-'), x = -x;
if(x > 9) print(x / 10);
putchar(x % 10 + '0');
}
template <typename T>
void print(T x, char ch) {
print(x), putchar(ch);
}
typedef double db;
typedef long long ll;
typedef unsigned long long ull;
namespace Geo {
typedef double db;
const db eps = 1e-9, PI = acos(-1), inf = numeric_limits<db>::max();
inline int sign(db a) {return a < -eps ? -1 : a > eps;}
inline int cmp(db a, db b) {return sign(a - b);}
inline bool inmid(db k, db a, db b) {return sign(a - k) * sign(b - k) <= 0;}
struct Point {
db x, y;
Point(db _x, db _y): x(_x), y(_y){}
Point() = default;
Point operator+(const Point& b) const {return Point(x + b.x, y + b.y);}
Point operator-(const Point& b) const {return Point(x - b.x, y - b.y);}
Point operator*(const db& b) const {return Point(x * b, y * b);}
Point operator/(const db& b) const {return Point(x / b, y / b);}
bool operator==(const Point& b) const {return !cmp(x, b.x) && !cmp(y, b.y);}
bool operator!=(const Point& b) const {return !(*this == b);}
bool operator<(const Point& b) const {
int c = cmp(x, b.x);
if(c) return c == -1;
return cmp(y, b.y) == -1;
}
bool operator>(const Point& b) const {return b < *this;}
Point right(const db& len) {return Point(x + len, y);}
Point up(const db& len) {return Point(x, y + len);}
db length() const {return hypot(x, y);}
db length2() const {return x * x + y * y;}
Point unit() const {return *this / this->length();}
void print() const {printf("%.11f %.11f\n", x, y);}
void scan() const {scanf("%lf %lf", &x, &y);}
db dis(Point b) const {return (*this - b).length();}
db dis2(Point b) const {return (*this - b).length2();}
Point rotate(db ac) const {return Point(x * cos(ac) - y * sin(ac), y * cos(ac) + x * sin(ac));}
Point rotate90() const {return Point(-y, x);}
db dot(Point o) const {return x * o.x + y * o.y;}
db det(Point o) const {return x * o.y - y * o.x;}
};
typedef Point Vector;
typedef vector<Point> Polygon;
struct Line {
Point u, v;
Line(const Point& _a, const Point& _b): u(_a), v(_b){}
Line() = default;
Vector getVec() const {return v - u;}
Line go(Vector t) {return Line(u + t, v + t);}
bool isPoint() const {return u == v;}
db length() const {return u.dis(v);}
db length2() const {return u.dis2(v);}
void print() const {u.print(), v.print();}
void scan() {u.scan(), v.scan();}
};
inline db dot(Point ab, Point ac) { //点积
return ab.x * ac.x + ab.y * ac.y;
} //|ab|*|ac|*cosa
inline int dotOp(Point c, Point a = {0, 0}, Point b = {0, 1e5}) {
return sign(dot(b - a, c - a));
} //+: 1,4 -: 2,3
inline db cross(Point ab, Point ac) { //叉积
return ab.x * ac.y - ab.y * ac.x;
} //|ab|*|ac|*sina
inline int crossOp(Point c, Point a = {0, 0}, Point b = {0, 1e5}) {
return sign(cross(b - a, c - a));
} //+: 1,2 -: 3,4
inline int Op(Point c, Point a = {0, 0}, Point b = {0, 1e5}) { //相对象限
int lr = dotOp(c, a, b), ud = crossOp(c, a, b);
if(!lr || !ud) return 0;
return lr + ud == 2 ? 1 : (lr + ud == -2 ? 3 : (lr == -1 ? 2 : 4));
}
inline int Quadrant(const Point& a) { //象限
int x = cmp(a.x, 0), y = cmp(a.y, 0);
if(x > 0 && y > 0) return 1;
if(x < 0 && y > 0) return 2;
if(x < 0 && y < 0) return 3;
if(x > 0 && y < 0) return 4;
return 0;
}
bool parallel(const Line& a, const Line& b) { //直线平行
return sign(cross(a.getVec(), b.getVec())) == 0;
}
bool sameDir(const Line& a, const Line& b) { //直线同向
return parallel(a, b) && sign(dot(a.getVec(), b.getVec())) == 1;
}
bool vertical(const Line& a, const Line& b) { // 直线垂直
return sign(dot(a.getVec(), b.getVec())) == 0;
}
// bool compairAng(const Point& a, const Point& b) {
// }
// bool operator<(const Line& a, const Line& b) {
// }
inline db disPtoL(Point c, Line a) { //点到直线距离
return fabs(cross(a.getVec(), c - a.u)) / a.length();
}
inline Point nearestPoint(Point c, Line ab) { //点到线段的最近点
db t = dot(c - ab.u, ab.getVec()) / ab.length2();
if(0 <= t && t <= 1) return ab.u + ab.getVec() * t;
return c.dis(ab.u) > c.dis(ab.v) ? ab.v : ab.u;
}
inline db disPtol(Point c, Line a) { //点到线段距离
return c.dis(nearestPoint(c, a));
}
inline Point pjPoint(Point c, Point a, Point b) { //投影点
return a + (b - a).unit() * dot(c - a, b - a) / (b - a).length();
}
inline Point symPoint(Point c, Point a, Point b) { //对称点
return pjPoint(c, a, b) * 2 - c;
}
inline Point getInsec(Point a, Point b, Point c, Point d) { //获取交点
db w1 = cross(a - c, d - c), w2 = cross(d - c, b - c);
return (a * w2 + b * w1) / (w1 + w2);
}
inline Point getInsec(Line a, Line b) { //直线交点
return getInsec(a.u, a.v, b.u, b.v);
}
inline bool inseg(Point c, Point a, Point b) { //点在线段上
if(c == a || c == b) return 1;
return sign(cross(b - a, c - a)) == 0 && sign(dot(a - c, b - c)) == -1;
}
inline bool inseg(Point c, Line ab) { //点在线段上
return inseg(c, ab.u, ab.v);
}
inline bool intersect(db l1, db r1, db l2, db r2) { //排斥实验 检查线段对角线矩形是否相交
if(l1 > r1) swap(l1, r1);
if(l2 > r2) swap(l2, r2);
return cmp(r2, l1) != -1 && cmp(r1, l2) != -1;
}
inline int spanLine(Point a, Point b, Point c, Point d) { //线段ab跨立线段cd 跨立试验 <0成功 =0在直线上 >0失败
return sign(cross(a - c, d - c)) * sign(cross(b - c, d - c));
}
inline int spanLine(Line a, Line b) { //线段a跨立线段b 跨立试验 <0成功 =0在直线上 >0失败
return spanLine(a.u, a.v, b.u, b.v);
}
inline bool checkSSsp(Point a, Point b, Point c, Point d) { //线段严格相交
return spanLine(a, b, c, d) < 0 && spanLine(c, d, a, b) < 0;
}
inline bool checkSS(Point a, Point b, Point c, Point d) { //线段非严格相交
return intersect(a.x, b.x, c.x, d.x) && intersect(a.y, b.y, c.y, d.y)
&& spanLine(a, b, c, d) <= 0 && spanLine(c, d, a, b) <= 0;
}
inline bool checkSS(Line a, Line b, bool Notsp = true) {
if(Notsp) return checkSS(a.u, a.v, b.u, b.v);
else return checkSSsp(a.u, a.v, b.u, b.v);
}
inline db disltol(Line a, Line b) { //线段到线段距离
if(checkSS(a, b, 1)) return 0;
return min(min(disPtol(a.u, b), disPtol(a.v, b)),
min(disPtol(b.u, a), disPtol(b.v, a)));
}
inline bool cmpAtan(Point a, Point b) { //极角排序
if(cmp(atan2(a.y, a.x), atan2(b.y, b.x)) != 0) return atan2(a.y, a.x) < atan2(b.y, b.x);
return a.x < b.x;
}
inline void sortACW(Polygon& v) { //逆时针排序
Point g(0, 0);
int n = v.size();
for(int i = 0; i < n; ++i) g.x += v[i].x, g.y += v[i].y;
g.x /= n, g.y /= n;
sort(v.begin(), v.end(), [&](Point& a, Point& b) {return sign(cross(a - g, b - g)) == 1;});
}
inline db area(const Polygon& v) { //多边形面积 需要逆时针排序
db ans = 0;
int len = v.size();
if(len < 3) return 0;
for(int i = 0; i < len; ++i) ans += cross(v[i], v[(i + 1) % len]);
return ans / 2;
}
inline bool isConvex(const Polygon& v) { //判断凸多边形 需要逆时针排序
int n = v.size();
if(n < 3) return 0;
for(int i = 0; i < n; ++i) {
if(cross(v[(i + 1) % n] - v[i], v[(i + 2) % n] - v[(i + 1) % n]) < 0) return 0;
}
return 1;
}
inline int contain(const Polygon& v, Point q) { //点和多边形位置关系 内部1 外部-1 多边形上0
int n = v.size();
int res = -1;
for(int i = 0; i < n; ++i) {
Vector a = v[i] - q, b = v[(i + 1) % n] - q;
if(cmp(a.y, b.y) == 1) swap(a, b);
if(sign(a.y) != 1 && sign(b.y) == 1 && sign(cross(a, b)) == 1) res = -res;
if(sign(cross(a, b)) == 0 && sign(dot(a, b)) != 1) return 0;
}
return res;
}
inline Polygon ConvexHull(Polygon A, int flag = 1) { //凸包 不严格0 严格1
int n = A.size();
if(n <= 2) return A;
Polygon ans(n * 2);
int now = -1;
sort(A.begin(), A.end());
for(int i = 0; i < n; ans[++now] = A[i++])
while(now > 0 && crossOp(A[i], ans[now - 1], ans[now]) < flag) --now;
for(int i = n - 2, pre = now; i >= 0; ans[++now] = A[i--])
while(now > pre && crossOp(A[i], ans[now - 1], ans[now]) < flag) --now;
ans.resize(now);
return ans;
}
inline db convexDimater(Polygon v) { //凸包直径
int now = 0, n = v.size();
db ans = 0;
for(int i = 0; i < n; ++i) {
now = max(now, i);
while(1) {
db k1 = v[i].dis(v[now % n]), k2 = v[i].dis(v[(now + 1) % n]);
ans = max(ans, max(k1, k2));
if(cmp(k2, k1) == 1) ++now;
else break;
}
}
return ans;
}
inline Polygon convexCut(Polygon v, Line a) { //凸包v被直线a分割成的逆时针凸包
int n = v.size();
Polygon ans;
for(int i = 0; i < n; ++i) {
int k1 = crossOp(v[i], a.u, a.v), k2 = crossOp(v[(i + 1) % n], a.u, a.v);
if(k1 >= 0) ans.emplace_back(v[i]);
if(k1 * k2 < 0) ans.emplace_back(getInsec(a, Line(v[i], v[(i + 1) % n])));
}
return ans;
}
db NPPD(int l, int r, const vector<Point>& v, vector<int>& tmp) {
if(l == r) return inf;
if(l + 1 == r) return v[l].dis(v[r]);
int mid = (l + r) >> 1;
db d = min(NPPD(l, mid, v, tmp), NPPD(mid + 1, r, v, tmp));
int p = 0;
for(int i = l; i <= r; ++i) if(fabs(v[mid].x - v[i].x) < d) tmp[p++] = i;
sort(tmp.begin(), tmp.begin() + p, [&](int& a, int& b){return cmp(v[a].y, v[b].y) == -1;});
for(int i = 0; i < p; ++i) {
for(int j = i + 1; j < p && v[tmp[j]].y - v[tmp[i]].y < d; ++j) {
d = min(d, v[tmp[j]].dis(v[tmp[i]]));
}
}
return d;
}
db nearestPPDis(vector<Point> v) {//平面最近点对
sort(v.begin(), v.end());
int n = v.size();
vector<int> tmp(n);
return NPPD(0, n - 1, v, tmp);
}
struct Circle {
Point o;
db r;
void scan() {
o.scan();
scanf("%lf", &r);
}
Circle(Point _o, db _r): o(_o), r(_r){}
Circle() = default;
bool operator==(const Circle b) const {
return o == b.o && cmp(r, b.r) == 0;
}
db area() {return PI * r * r;}
int contain(Point t) { //1圆外 0圆上 -1圆内
return cmp(o.dis(t), r);
}
bool intersect(Circle b) {//两圆是否相交
return cmp(o.dis(o), r + b.r) != 1
&& cmp(o.dis(o), fabs(r - b.r)) != -1;
}
int posRela(Circle b) {//0外离 1外切 2相交 3内切 4内含
db d = o.dis(b.o);
if(cmp(d, r + b.r) == 1) return 0;
if(cmp(d, r + b.r) == 0) return 1;
if(cmp(d, r + b.r) == -1 && cmp(d, fabs(r - b.r)) == 1) return 2;
if(cmp(d, fabs(r - b.r)) == 0) return 3;
if(cmp(d, fabs(r - b.r)) == -1) return 4;
assert(0);
}
int intersect(Line t) { //-1相交 0相切 1相离
return cmp(disPtoL(o, t), r);
}
int intersect_seg(Line t) {
Point k = nearestPoint(o, t);
return cmp(o.dis(k), r);
}
};
}
typedef Geo::Point point;
typedef Geo::Line line;
typedef Geo::Polygon polygon;
typedef Geo::Circle circle;
function<int(db)> sign = Geo::sign;
function<int(db, db)> cmp = Geo::cmp;
const db eps = 1e-6;
const int M = (int)2e5;
const int N = (int)1e5;
const ll mod = (ll)1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll linf = 0x3f3f3f3f3f3f3f3f;
int n;
point p[M + 5];
void work() {
scan(n);
for(int i = 0; i <= n + 1; ++i) p[i].scan();
db mi = (ll)1e18;
swap(p[0], p[1]);
for(int i = 1; i <= n; ++i) {
mi = min(mi,
disPtol(p[0],
line(p[1], p[1] + p[i + 1])));
p[1] = p[1] + p[i + 1];
}
printf("%.12f\n", mi);
}
int main() {
int T = 1;
for(int ca = 1; ca <= T; ++ca) {
work();
}
return 0;
}
E 真假签到题
void solve() {
int n = 1; cin >> n;
cout << n << endl;
}
F 小红的记谱法
pass
G 子序列权值乘积
题意:给一个数组,求数组所有非空子序列的权值之积。
数组的权值:数组中的最大值乘最小值
思路:(欧拉降幂)
1. 长度为n的数组,有2^n-1个非空子序列,枚举必然超时。显然,对序列a 排个序对答案是不影响的。
2. 由于求的是所有子序列的最大值与最小值乘积的乘积,所以我们可以单独考虑最大值与最小值的贡献。
-
枚举 i,表示 a[i]为最大值,那么i 必选,[i+1,n] 必不能选,[1,i−1] 可选可不选。因此共有 2 i − 1 {2^{i-1}} 2i−1种方案,a[i] 作为最大值的贡献即为 a [ i ] 2 i − 1 {a[i]^{2^{i-1}}} a[i]2i−1。
-
由于 2 i − 1 {2^{i-1}} 2i−1很大,不可能先把 2 i − 1 {2^{i-1}} 2i−1求出来再用快速幂求,所以欧拉降幂
-
因为 a[i] 与 1 0 9 + 7 {10^9}+7 109+7互质,所以 a [ i ] 2 i − 1 % ( 1 0 9 + 7 ) = a [ i ] 2 i − 1 % φ ( 1 0 9 + 7 ) % ( 1 0 9 + 7 ) {a[i]^{2^{i-1}}}\%(10^{9}+7)={a[i]^{2^{i-1}\%φ(10^{9}+7)}\%(10^{9}+7)} a[i]2i−1%(109+7)=a[i]2i−1%φ(109+7)%(109+7)
-
φ ( 1 0 9 + 7 ) = = 1 0 9 + 7 − 1 {φ(10^{9}+7)}==10^9+7-1 φ(109+7)==109+7−1
int qmi(int a, int k, int p = mod) {
int res = 1;
while(k) {
if(k & 1) res = res * a % p;
a = a * a % p;
k >>= 1;
}
return res;
}
int n, a[N];
void solve() {
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
sort(a + 1, a + 1 + n);
int ans = 1;
for (int i = 1; i <= n; i++) {
ans = ans * qmi(a[i], qmi(2, i - 1, mod - 1)) % mod;
ans = ans * qmi(a[i], qmi(2, n - i, mod - 1)) % mod;
}
cout << ans << endl;
}
H 真真真真真签到题
void solve() {
double n = 1; cin >> n;
n *= 2;
printf("%.7lf\n", n * n * n / 3.0 / sqrt(3.0));
}
I 爆炸的符卡洋洋洒洒
题意:从n张牌(消耗a,威力b)中选择,使得最终牌组消耗为k的倍数,并且威力最大。
思路:
1. dp[i][j]:前i张牌,消耗总和mod k 的余数为j时的最大威力是多少
2. 每个卡选和不选
f[i][j] = f[i - 1][j], 不选
f[i][j] = max(f[i][j], b + f[i - 1][(k + j - a % k) % k]), 选
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
ll f[1010][1010];
int n, k;
int main() {
cin >> n >> k;
memset(f, -0x3f, sizeof f);
f[0][0] = 0;
for (int i = 1; i <= n; i++) {
int a, b; cin >> a >> b;
for (int j = 0; j < k; j++) {
f[i][j] = f[i - 1][j];
f[i][j] = max(f[i][j], b + f[i - 1][(k + j - a % k) % k]);
}
}
if(f[n][0] <= 0) cout << -1 << endl;
else cout << f[n][0] << endl;
return 0;
}
J 区间合数的最小公倍数
题意:给定 [l,r], 求出区间内所有合数的最小公倍数
思路:无语了!!!,map超时???(用unordered_map吧,害)
1. 经典题:记录每个质因子的最大次幂
2. 答案:所有质因子的最大幂次的乘积
const int N = 3e4 + 10;
const int mod = 1000000007;
/*---------------------------------------------------------------------------------------------------------------------------*/
ll qmi(ll a, ll b){ if(!b) return 1ll; if(b&1) return a*qmi(a*a%mod, b>>1)%mod; return qmi(a*a%mod, b>>1)%mod;}
/*---------------------------------------------------------------------------------------------------------------------------*/
unordered_map<int, int> mp;
int prime[N], cnt;
bool st[N];
void init() {
for (int i = 2; i <= N; i++) {
if(!st[i]) prime[cnt++] = i;
for (int j = 0; prime[j] <= N / i; j++) {
st[prime[j] * i] = true;
if(i % prime[j] == 0) break;
}
}
}
void func(int x) {
// 遍历比合数x小的所有质数
for (int i = 0; prime[i] < x && i < cnt; i++) {
int now = x, s = 0;
while(now % prime[i] == 0) now /= prime[i], s++;
mp[prime[i]] = max(mp[prime[i]], s); // 存所有质因子的最高次
}
}
void solve() {
init(); // 线筛
int l, r; cin >> l >> r;
for (int i = l; i <= r; i++) {
if(st[i]) func(i); // 如果是合数
}
if(mp.empty()) { puts("-1"); return; }
int ans = 1;
for (auto &[k, v]: mp) ans = ans * qmi(k, v) % mod; // ans
cout << ans << endl;
}
K 小红的真真假假签到题题
题意:给定x,构造y。
y != x,y % x == 0
二进制下,x是y的一个字串,并且 x,y的0, 1个数不同
y不超过 1e19,1≤x≤1e9
思路:
思维题,见代码。
void solve() {
cin >> n;
int x = n;
n <<= 31;
cout << (x | n) << endl;
}