prompt设计之调用qwem,internlm,chatglm等模型代码方法(启智平台)

实现效果和模型相关介绍

**通义千问-7B(Qwen-7B)**是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。

本文旨在通过启智平台完成大模型的调用,由于本地环境受限无法运行成功,可以利用启智社区平台白嫖GPU算力,实现效果代码,代码由github官方文档获得:

参考链接:github官方文档

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig

# 可选的模型包括: "Qwen/Qwen-7B", "Qwen/Qwen-14B"
tokenizer = AutoTokenizer.from_pretrained("/code/qwen", trust_remote_code=True)

# 打开bf16精度,A100、H100、RTX3060、RTX3070等显卡建议启用以节省显存
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, bf16=True).eval()
# 打开fp16精度,V100、P100、T
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值