gcd与lcm (含快速幂)


前言

今天的主要内容是最大公约数与最小公倍数的求法以及相关事宜


一、最大公约数(gcd)

求最大公约数有三种办法
1.暴力枚举法,代码如下:

int a,b;int gcd=0;
cin>>a>>b;
for(int i=1;i<min(a,b);i++)
if(a%i==0&&b%i==0)
if(i>gcd)
gcd=i;
cout<<gcd<<endl;

优点:比较好想,直接粗暴
缺点:循环次数较多,如果输入数据范围较大则容易超时

2.辗转相除法
首先举个例子吧,比如找 1112 和 695 的最大公约数。
首先,用较大的数字对较小的数字取余,也就是进行mod操作
1112 mod 695 = 417(然后用除数695和余数417进行mod操作)
695 mod 417 =278 (循环往复,用除数除以余数
417 mod 278 = 139 (继续)
278 mod 139 = 0 (当取余结果为0时,停止该过程)
也就是说,278可以被139整除。
当余数为0时,最后一个除数139 就是1112和695的最大公约数。
代码实现如下

int gcd(int a,int b){

if(a%b!=0)

return gcd(b,a%b);

else return b;
}
//此处省略main函数
int a,b,t;

cin>>a>>b;

if(a<b){
t=a;
a=b;
b=t;
}

int ans=gcd(a,b);

cout<<ans<<endl;

3.更相减损术
主要思想:
与辗转相除法类似,用较大数减去较小数,若不为零,则用减数减去所得结果,如此循环。
代码如下:

int gcd (int a,int b){

if (a-b!=0)
return gcd(b,a-b);

else return b;
}
//此处省略main函数
int a,b,t;

cin>>a>>b;

if(a<b){
t=a;
a=b;
b=t;
}

int ans=gcd(a,b);

cout<<ans<<endl;

缺点:如果两个数大小相差过大,可能导致需要循环相减的次数增加,从而使得算法复杂度退化为o(n);相比之下,辗转相除法的算法复杂度更加稳定,始终为o(lg n);

4.简单粗暴直接法
其实,万能的c++为我们配置了一个强大的函数,可以直接求出最大公约数。具体操作如下

cout<<__gcd(a,b)<<endl;

哈哈哈哈有没有被惊到
头文件是

#include <algorithm>

当然你要非得偷懒用万能头

#include<bits/stdc++.h>

谁也拦不住你对吧,哈哈

二、最小公倍数(lcm)

求解最小公倍数的时候一般要先求出最大公约数
然后就可以套公式啦
lcm(a,b)=(a*b)/gcd(a,b)
也就是a,b的最小公倍数就是a和b的乘积除以a和b的最大公因数
代码如下

这么简单你让我怎么给你写代码

好了,言归正传,有一件事情需要大家注意。就是计算的顺序问题,如果直接a*b,在数据较大的时候容易溢出,导致错误的结果(WA),所以保险起见,我们一般都是先除再乘。

lcm(a,b)=a/gcd(a,b)*b

三、多个数的最大公约数与最小公倍数

其实也很简单,具体思路就是,先求出前两个数的最大公约数,再用这个数与下一个数进行求取最大公约数的操作,反复循环。
代码实现如下:


//假设有num个数
int x[num+10];

int gcd(int a,int b){

if(a%b!=0)

return gcd(b,a%b);

else return b;
}
//此处省略main函数

for(int i=0;i<num;i++)
cin>>x[i];

int k=x[0];

for(int i=1;i<num;i++)
k=gcd(k,x[i]);

cout<<k<<endl;

多个数的最小公倍数求法与此类似,也是先求出两个数的最小公倍数,再用所求得的数与下一个数进行求取最小公倍数,如此循环往复。
代码如下:


//假设有num个数
int x[num+10];

int lcm(int a,int b){
int k=__gcd(a,b);
return a/k*b;
}

int lcm(int a,int b)
//此处省略main函数

for(int i=0;i<num;i++)
cin>>x[i];

int k=x[0];

for(int i=1;i<num;i++){
k=lcm(k,x[i]);
}

cout<<k<<endl;

四、取模运算的一些性质

为了防止数据溢出,我们通常会根据取模运算的一些性质来对式子进行一些优化。比如:
(a + b) % p = (a % p + b % p) % p
(a * b) % p = (a % p * b % p) % p
a ^ b % p = ((a % p)^b) % p
(或者用下面的快速幂)

五、快速幂与二分法

举个例子:求a求 a^b % m的值
这个用普通算法我就不说了,时间复杂度O(b),也就是上面的a ^ b % p = ((a % p)^b) % p一直循环

而快速幂的核心就是怎么迅速的将a的b次幂求出来。

1)当b是奇数时,那么有 a^b = a * a^*(b-1)

2)当b是偶数时,那么有 a^b = a^(b/2) * a^(b/2)
代码如下:


typedef long long ll;

ll Fastpow(ll a, ll b, ll m){

	if(b == 0)
		return 1;
		
	else if(b & 1)//b & 1等价于 b % 2==1
		return a * Fastpow(a, b - 1, m) % m;
		
	else{
		ll num = Fastpow(a, b/2, m) % m;
		return num * num % m;
	}
	

注:
1.未考虑b<0的情况,如体中需要,自行加入即可。
2.作者水平有限,不足之处敬请指出。
3.听说给我点赞收藏的高数都打90多??

  • 14
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值