高精度乘法

高精度×低精度

参考yxc

#include <bits/stdc++.h>
using namespace std;
vector<int>mul(vector<int>&A,int b)
{
    vector<int>C;
    int t=0;
    for(int i=0;i<A.size()||t;i++)
    {
        if(i<A.size())t+=A[i]*b;
        C.push_back(t%10);
        t/=10;
    }
    while(t)
    {
        C.push_back(t%10);
        t/=10;
    }
    while(C.size()>1&&!C.back())C.pop_back();
    return C;
}
int main()
{
    string a;
    int b;
    cin>>a>>b;
    vector<int>A;
    for(int i=a.size()-1;i>=0;i--)
        A.push_back(a[i]-'0');
    auto C=mul(A,b);
    for(int i=C.size()-1;i>=0;i--)
        cout<<C[i];
    return 0;
}

高精度×高精度

acwing佬写的

#include <iostream>
#include <vector>
using namespace std;
vector<int> mul(vector<int> &A, vector<int> &B) {
    vector<int> C(A.size() + B.size(), 0); // 初始化为 0,且999*99最多 5 位

    for (int i = 0; i < A.size(); i++)
        for (int j = 0; j < B.size(); j++)
            C[i + j] += A[i] * B[j];

    int t = 0;
    for (int i = 0; i < C.size(); i++) { // i = C.size() - 1时 t 一定小于 10
        t += C[i];
        C[i] = t % 10;
        t /= 10;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back(); // 必须要去前导 0,因为最高位很可能是 0
    return C;
}

int main() {
    string a, b;
    cin >> a >> b; // a = "1222323", b = "2323423423"

    vector<int> A, B;
    for (int i = a.size() - 1; i >= 0; i--)
        A.push_back(a[i] - '0');
    for (int i = b.size() - 1; i >= 0; i--)
        B.push_back(b[i] - '0');

    auto C = mul(A, B);

    for (int i = C.size() - 1; i >= 0; i--)
        cout << C[i];

    return 0;
}

作者:Anish
链接:https://www.acwing.com/solution/content/13694/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值