2022年电工杯B题参赛历程

本文记录了作者参加2022年电工杯B题的参赛过程,从选择题目、尝试欧拉图解法失败,到采用遗传算法和规划模型解决问题,最终得出解决方案。反思了在比赛中遇到的问题,如错误运用欧拉图、固守思路、过度依赖网络资源等,强调了解题灵活性和验证的重要性。
摘要由CSDN通过智能技术生成

第一天8:00-9:00:早上8点看到题目。8:00到9:00分别试着做了AB题。发现A题涉及的问题多,而B题与图论的知识有关,而且点数不是很多。(以前蓝桥杯的题还历历在目,起码也是50个点起步了)然后经小组讨论后选择了B题。

9:00-18:00在网上找到了解决方案,有模拟退火,动态规划,遗传算法等等。

16:00时,一问用了欧拉图解答,先将图形补充成欧拉图,然后用欧拉图代码跑了一遍,发现距离大的离谱。然后另一个组员就开始用遗传算法解答。晚上18:00。用遗传算法解出来的距离是582。然后队员开始解答第二题。我则一直在找为什么欧拉图不能解答。

23:00我终于发现了。其实是我概念没有搞清楚,欧拉图是遍历所有边,而汉密尔顿图才是遍历所有点。即最短汉密尔顿图可能解答该问题。最后我又发现一问完全可以先求局部最优解,再求整体最优解的方式。

第二天7:00-12:00 我们组采用规划模型,运用lingo进行解答。我负责建立方程,另外两个队友负责写作与第一问步骤的优化。

中午12:00。问题二结果出来了。时间是6个小时左右。我开始解决第三问,对比二问发现。只是多了一个往返步骤,我将部分二问的约束方程写到了三问中。同时对比和观察后发现,只需要在200-500载货量中,没到达一个点就返回一次。这样不断试错。然后寻找最优解。

15:00左右三问结果得出来了。7个小时左右。然后一个队友负责写文章。我和另一个队友负责建立第四问的模型。由于之前参加过五一建模比赛。而且也有类似的路径规划问题,好像是18年选旅游景点。找到了一篇类似的思想文章。那年的一等奖队伍,运用了双目标混合整数规划。我发现这思想完全可以拿来用嘛。我引入了两个变量。地点一和地点二。然后仿照问题2,3开始解答。晚上22:00结果跑出来是10个小时。当时直接傻眼了。我自己动笔算都能找

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值