图的一些表示方式、邻居和度的介绍

前言

由于最近需要学一学图神经网络,最终目标是需要用到R-GAT,但是总是不能一蹴而就的,拷下代码能跑应该不难,但是如果能够理解代码,修改代码,可能还是需要懂对应的模型理论知识。那还是先从图的表示开始吧…
下面的图是b站视频里截的,因为确实看图一目了然了
https://www.bilibili.com/video/BV1U44y1K7yP?p=2&vd_source=f57738ab6bbbbd5fe07aae2e1fa1280f

图的表示

邻接矩阵法

邻接矩阵是一种基础的图表示方式。假设一个图的节点数量为N,则生成一个N*N的矩阵。矩阵中的值为对应位置节点与节点之间的关系一般用A表示。

若节点i与节点j右边链接,则邻接矩阵的对应位置赋值1即可

无向图(边没有方向,即不区分1->2和2->1):
在这里插入图片描述

有向图:
在这里插入图片描述

有权有向图:
矩阵中的值用权重来表示即可
在这里插入图片描述

邻接列表法

邻接列表对于稀疏大图十分友好

有向无权图:
在这里插入图片描述
有向有权图:
在这里插入图片描述

边集法

头尾节点的元组来表示一组边

有向图:
在这里插入图片描述

无向图:
在这里插入图片描述

有向有权图:
在这里插入图片描述

邻居和度

节点的邻居指的是与该节点再同一边另一端的节点。
节点的度指的是该节点邻居的数量

无向图:
在这里插入图片描述

有向图:
在这里插入图片描述

有向图的邻居分为前继邻居和后继邻居,度又可分为入度和出度。
前继邻居:目标节点作为尾节点时与它相连的头节点。
后继邻居:目标节点作为头节点时,与它相连的尾节点。
入读:前继邻居的数量
出度:后继邻居的数量

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Icy Hunter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值