ZZULIOJ 2066: 带分数
题意: 给定一个数 N N N,问有多少组 a , b , c a,b,c a,b,c满足 a + b c = N a+\dfrac bc=N a+cb=N,且 a , b , c a,b,c a,b,c三个数不重不漏地涵盖 1 − 9 1-9 1−9这 9 9 9个数字,输出总组数
解题思路:
- 暴力枚举出 9 9 9个数的全排列,然后用一个长度为 9 9 9的数组保存全排列的结果
- 从全排列的结果中用两重循环暴力分解出三段,形如下图,通过
i
,
j
i,j
i,j 将一个排列分割,每段代表一个数
- 验证枚举出来的三个数是否满足题干条件,若满足则计数
#include<bits/stdc++.h>
using namespace std;
vector<int> num{1,2,3,4,5,6,7,8,9};
int check(int l,int r)
{
int sum=0;
for(int i=l;i<=r;i++)
sum=sum*10+num[i];
return sum;
}
int main()
{
int n;cin>>n;
int res=0;
do{
for(int i=0;i<9;i++)
for(int j=i+1;j<9;j++)
{
int a=check(0,i);
int b=check(i+1,j);
int c=check(j+1,8);
if(a==0 || b==0 || c==0) continue;
if(a*c+b==c*n) res++;
}
}while(next_permutation(num.begin(),num.end()));
cout<<res;
return 0;
}