数据结构:二叉树的非递归遍历

二叉树的前序遍历

144.二叉树的前序遍历

题目描述

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。
在这里插入图片描述
提示:

树中节点数目在范围 [0, 100] 内
-100 <= Node.val <= 100

思路

我们知道前序遍历是按照根–>左子树–>右子树的顺序来遍历的,如果要使用迭代的方法来解决,我们可以使用栈来解决,先把根节点放入栈中,然后将右孩子加入栈,再加入左孩子。因为这样子进栈后,出栈的顺序就是根–>左子树–>右子树

在这里插入图片描述

代码

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> list=new ArrayList();
        Stack<TreeNode> stack=new Stack();
        if(root==null){
            return list;
        }
        //只要栈非空,则把栈顶元素弹出
        stack.push(root);
        while(!stack.isEmpty()){
            TreeNode node= stack.pop();
            list.add(node.val);
            if(node.right!=null){
                 stack.push(node.right);
            }
            if(node.left!=null){
                 stack.push(node.left);
            }
           
           
        }
        return list;

    }
}

二叉树的中序遍历

题目描述

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。
在这里插入图片描述
提示:

树中节点数目在范围 [0, 100] 内
-100 <= Node.val <= 100

思路

中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中)
那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
在这里插入图片描述

代码

class Solution {
	public List<Integer> inorderTraversal(TreeNode root) {
		List<Integer> result = new ArrayList<>();
        if (root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while (cur != null || !stack.isEmpty()){
           if (cur != null){
               stack.push(cur);
               cur = cur.left;
           }else{
               cur = stack.pop();
               result.add(cur.val);
               cur = cur.right;
           }
        }
        return result;
	}
}

二叉树的后序遍历

后序遍历

题目描述

给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 。
在这里插入图片描述
提示:

树中节点的数目在范围 [0, 100] 内
-100 <= Node.val <= 100

思路

后续遍历的遍历顺序是左右根,前序遍历的遍历顺序是根左右,我们发现我们只需要调整一下左右孩子的进栈顺序,然后再反转一下,就可以得到后序遍历
在这里插入图片描述

代码

class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> list=new ArrayList();
        Stack<TreeNode> stack=new Stack();
        if(root==null){
            return list;
        }
        stack.push(root);
        while(!stack.isEmpty()){
            TreeNode node=stack.pop();
            list.add(node.val);
            if(node.left!=null){
                stack.push(node.left);
            }
            if(node.right!=null){
                stack.push(node.right);
            }
        }
    //反转
        Collections.reverse(list);
        return list;


    }
}

二叉树的层序遍历

层序遍历

题目描述

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
在这里插入图片描述

前提知识

在解决这道题目之前,我们应该先了解什么是层序遍历
层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。
队列先进先出,符合一层一层遍历的逻辑,我们可以使用队列来实现层序遍历
在这里插入图片描述

public void levelOrderTraversal(Node root){
    if(root==null){
        return;
    }
    Queue<Node> queue=new LinkedList<>();
    queue.offer(root);
    while(!queue.isEmpty()){
        Node node=queue.poll();
        System.out.print(node.val+" ");
        if(node.left!=null) {
            queue.offer(node.left);
        }
        if(node.right!=null) {
            queue.offer(node.right);
        }
    }
}

代码

class Solution {
	public List<List<Integer>> levelOrder(TreeNode root) {
		if(root==null) {
			return new ArrayList<List<Integer>>();
		}
		
		List<List<Integer>> res = new ArrayList<List<Integer>>();
		Queue<TreeNode> queue = new LinkedList<TreeNode>();
		//将根节点放入队列中,然后不断遍历队列
		queue.add(root);
		while(queue.size()>0) {
			//获取当前队列的长度,这个长度相当于 当前这一层的节点个数
			int size = queue.size();
			ArrayList<Integer> tmp = new ArrayList<Integer>();
			//将队列中的元素都拿出来(也就是获取这一层的节点),放到临时list中
			//如果节点的左/右子树不为空,也放入队列中
			for(int i=0;i<size;++i) {
				TreeNode t = queue.poll();
				tmp.add(t.val);
				if(t.left!=null) {
					queue.offer(t.left);
				}
				if(t.right!=null) {
					queue.offer(t.right);
				}
			}
			//将临时list加入最终返回结果中
			res.add(tmp);
		}
		return res;
	}
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不断前进的皮卡丘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值