每日一签——蓝桥杯_数字游戏

每日一签

题目解析

题目

给定一个 1 1 1 N N N的排列 a [ i ] a[i] a[i],每次将相邻两个数相加,得到新序列,再对新序列重复这样的操作,显然每次得到的序列都比上一次的序列长度少 1 1 1,最终只剩一个数字。
例如:

  3 1 2 4
  4 3 6
  7 9
  16

现在如果知道 N N N和最后得到的数字 s u m sum sum,请求出最初序列 a [ i ] a[i] a[i],为 1 1 1 N N N的一个排列。若有多种答案,则输出字典序最小的那一个。数据保证有解。
输入样例:

4 16

输出样例:

3 1 2 4

思路

见下图:
请添加图片描述
从下往上看,我们可以发现最终得到的值为
s u m = 1 + 2 × 4 + 3 × 6 + 4 × 4 + 5 sum = 1+2\times 4+3\times 6+4\times 4+5 sum=1+2×4+3×6+4×4+5
由此规律可得如下公式:
S u m ( n ) = a [ 1 ] × C n − 1 0 + a [ 2 ] × C n − 1 1 + … … + a [ n ] × C n − 1 n − 1 Sum(n) = a[1]\times C_{n-1}^{0}+a[2]\times C_{n-1}^{1}+……+a[n]\times C_{n-1}^{n-1} Sum(n)=a[1]×Cn10+a[2]×Cn11++a[n]×Cn1n1
那这就简单了啊,利用库函数next_permutation实现全排列,第一次满足由上述公式所得结果为输入的 s u m sum sum值得就是我们需要得答案。

代码

#include<bits/stdc++.h>
#include<algorithm>
#include<functional>
#define inf 1e9
#define ll long long
#define pii pair<int,int>
using namespace std;
const int N = 1e3+10;
const int mod = 1e4;
int t, n, m, k;
int a[N], f[N];
void solve(){
	cin>>n>>m;
    for(int i = 1;i <= n;i++)a[i] = i;
    int fz = n-1, fm = 1;f[1] = f[n] = 1;
    for(int i = 2;i <= n-1;i++)
       f[i] = f[i-1]*fz/fm, fz--, fm++;
    do{
        int res = 0;
        for(int i = 1;i <= n;i++){
            if(i==1||i==n)res += a[i];
            else res += a[i]*f[i];
        }
        if(res==m){
            for(int i = 1;i <= n;i++){
                cout<<a[i]<<" ";
            }cout<<"\n";
        }
    }while(next_permutation(a+1,a+n+1));
    for(int i = 1;i <= n;i++){
        cout<<a[i]<<" ";
    }
}
int main(){
	// cin>>t;
	t = 1;
	while(t--)
    	solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值