- 博客(12)
- 收藏
- 关注
原创 ieee会议版权问题
有没有前辈知道ieee会议版权表格里的作者和论文所列的作者不一致会有影响吗?版权表格提交了之后,又增添了一个作者,会有问题吗?但是论文接受通知里所列的作者包含全部的。
2024-03-17 09:16:32 762 5
原创 跑了几轮batch后报错:维度不匹配
在同一个epoch里跑了几轮后,报错维度不匹配,原因是设置全连接层维度时,样本量用的batch_size = 64,但是最后取最后一个batch时,可能不够64,因此报错唯独不匹配。在定义模型时,读取输入数据的样本维度,使用该实时维度。
2024-03-13 16:43:06 724
原创 目标检测模型中的几个损失值
DFL损失的主要作用是用于校正模型在预测物体边界框时的误差,优化后的效果可以在一定程度上针对有些模糊或者焦点不集中的图片提升对象检测的精度。Box Loss直接依赖于模型预测的边界框与实际(或称为真值)边界框之间的距离。DFL损失是一个更高级的损失函数,目标是能在某些更复杂的情况下获得更好的性能,特别是针对一些难以边界框预测的目标。Box损失函数通常用于基本的目标检测任务,如Faster R-CNN, SSD等方法,Box损失是一个相对简单的损失函数,它主要计算预测的边界框与实际的边界框之间的位置偏差。
2024-03-08 21:48:23 6062 1
原创 目标检测模型的几个指标
F1得分是一个综合了精确率(precision)和召回率(recall)的指标,其计算公式是2 * (精确率 * 召回率) / (精确率 + 召回率),值范围在0~1之间,取值越大则模型性能越好。精确率(Precision): Precision 是正确预测为正的样本(TP)占预测为正的总样本(TP+FP)的比例。召回率(Recall): Recall 是正确预测为正的样本(TP)占实际为正的总样本(TP+FN)的比例。也就是,这些样本是正类,模型预测为正类。也就是,这些样本是负类,模型预测为负类。
2024-03-08 21:41:11 4841 1
原创 yolo : 无法将“yolo”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。
重新安装ultralytics,一定要保证虚拟环境为anaconda中为yolo所设置的位置。
2024-03-06 17:03:50 2481 2
原创 CIF10图像分类准确率提高方法
中文通常翻译为“批归一化”,是神经网络训练中的一种重要技术。它的主要目的是解决神经网络训练过程中的内部协变量偏移(Internal Covariate Shift)问题,通过对每一层神经网络的输入进行归一化处理,使得输入数据的分布更加稳定,从而提高模型的训练速度和精度。测试集loss、acc: [0.7052783966064453, 0.7954000234603882]进行数据增强后,测试集准确率降低。3、自定义学习率衰减。二、ResNet18。
2024-03-04 17:05:20 859 1
原创 Sequential模型和Function API模型
泛型模型或功能模型则更加灵活,能够支持不同的层结构,包括多输出模型等更通用的模型结构。这种模型允许你构建具有复杂拓扑结构的网络,并能够设定各层级之间的复杂关系。如下代码是实现CIFAR10数据集分类任务的CNN模型的构建,使用的是tensorflow2.10 keras中的Sequential模型。:顺序模型是线性堆叠的模型,即各层之间是依次顺序的线性关系。模型的结构通过一个列表来定义,这种模型适用于简单的体系结构。
2024-03-03 14:27:42 397
原创 如果多分类任务输出层未使用softmax激活函数,需要添加from_logits参数
【代码】如果多分类任务输出层未使用softmax激活函数,需要添加from_logits参数。
2024-03-03 14:23:16 379
原创 关于keras_Dropout层一些问题
如果使用下述代码,如果使用Dropout层,会导致准确率极低,是过拟合的现象。注释掉之后,可以得到准确率较高的模型,准确率曲线如下图。原因: 还未找到原因。
2024-03-03 12:41:52 633
原创 python——keras模型编译之后变成了None类型,无法fit
第一句代码可以正常运行,第二句则不可以,原因是第二句“model =。”重新定义了model,导致model变成了None类型,从而使模型无法训练 fit。
2024-03-03 12:04:18 423
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人