目标检测模型的几个指标

F1-confidence曲线:

F1得分是一个综合了精确率(precision)和召回率(recall)的指标,其计算公式是2 * (精确率 * 召回率) / (精确率 + 召回率),值范围在0~1之间,取值越大则模型性能越好。可以通过观察曲线找出什么样的置信度阈值可以使F1得分取得最高值,也就是在这个置信度阈值下,模型的性能最优。

Precision-Confidence曲线: 

在Precision-Confidence曲线中,X轴代表的是置信度阈值,Y轴代表的是该置信度阈值下的精确度。这个曲线可以帮助我们理解随着置信度阈值的改变,模型的精确度如何变化,进而帮助我们选择一个合适的置信度阈值来优化模型的表现。

混淆矩阵(Confusion Matrix),也称为误差矩阵 

混淆矩阵一般具有四个部分:

  1. True Positive(TP):正确预测为正类的样本数。也就是,这些样本是正类,模型预测为正类。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值