F1-confidence曲线:
F1得分是一个综合了精确率(precision)和召回率(recall)的指标,其计算公式是2 * (精确率 * 召回率) / (精确率 + 召回率),值范围在0~1之间,取值越大则模型性能越好。可以通过观察曲线找出什么样的置信度阈值可以使F1得分取得最高值,也就是在这个置信度阈值下,模型的性能最优。
Precision-Confidence曲线:
在Precision-Confidence曲线中,X轴代表的是置信度阈值,Y轴代表的是该置信度阈值下的精确度。这个曲线可以帮助我们理解随着置信度阈值的改变,模型的精确度如何变化,进而帮助我们选择一个合适的置信度阈值来优化模型的表现。
混淆矩阵(Confusion Matrix),也称为误差矩阵
混淆矩阵一般具有四个部分:
-
True Positive(TP):正确预测为正类的样本数。也就是,这些样本是正类,模型预测为正类。