图和树的性质与应用(一)

本文详细介绍了图的链式前向星存储结构,包括如何初始化和添加边,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的实现。接着,阐述了树的直径计算方法,以及并查集的数据结构,包括其初始化、查询和合并操作。最后,讨论了最小生成树问题,对比了Kruskal和Prim算法,并提供了一个例题来展示Kruskal算法的应用。
摘要由CSDN通过智能技术生成

1.图的存储

1.1.链式前向星

主要思想为:以数组来模拟链表

  • 有一个边数组 Edges,每条边通过其 id 进行索引。比如Edges[1]
  • 有一个头数组 head,代表以每个顶点为头的第一条边的 id
struct Edge{
    int u, v, w, next // u是边的起始节点,v是终止节点,w是权重,nxt是下一条边的id
}Edges[MAXM];
int head[MAXN], tot; //tot 是 Edges 的下标

void init(int n){
    tot = 0;
    memset(head, -1, sizeof(head)); // head初始值默认没有连接边
}

void addEdge(int u, int v, int w){
    //构造一条边
    Edges[tot].u = u;
    Edges[tot].v = v;
    Edges[tot].w = w;
    Edges[tot].nxt = head[u];
    //插入对应的位置(其实没有插入,因为用的是数组)
    head[u] = tot++;
}

如下图所示:
在这里插入图片描述
注意:head[u]后面的边及他们的nxt都是以u作为起点的。

2.图的遍历

前向星的遍历是以边为基础的,通过边来寻找其他信息。而邻接数组是以点为基础的,我们考虑的是两个点之间是否连通。

2.1.图的遍历

2.1.1.DFS

简单来说,就是一条路走到黑,将一条路走到头再尝试别的路,因此我们说这是深度优先。因为我们倾向于先将路往深处走

void dfs(int u){
    //...
    for(int i = head[u]; i != -1; i = Edges[i].nxt){ // 前向星的遍历方式,遍历 u 的邻接边
        if(!vis[Edges[i].v]){ 
            vis[Edges[i].v] = true;
            dfs(Edges[i].v);
        }
    }
}

复杂度:O(m),m 是边的数目,其实就是最坏需要遍历所有边。

如果使用的是邻接数组,复杂度是 O(n^2),n 是点的数目。一般 m < n 2 m < n^2 m<n2,当所有点之间都互相有边时, m = n 2 m = n^2 m=n2

2.1.2.BFS

简单来说,就是先访问邻居,再考虑访问与邻居相接的节点。因此我们说是广度优先。因为我们的访问是按层次的,像波一样扩散的,而不是首先考虑一条路走到头。

2.2.树的直径

树的直径就是树中任意两点之间距离的最大值。

可以通过两次遍历求得

  • 随便选一个点 P,然后遍历一次,找到距离其最远的点 Q
  • 以 Q 为起始点再遍历一次,找到距离其最远的点 M
  • QM 就是直径

3.并查集

并查集是一种用来管理分组的数据结构,可以高效进行下面的操作

  • 查询元素 A 和 B 是否属于同一组
  • 合并 A 和 B 所在的组

3.1.实现

并查集可以使用类似于数形的结构实现,但是我们并不在意并查集的结构,只在意元素所在的分组。

因此我们直接从分组中选一个代表元素,来标记一个组。
在这里插入图片描述

我们认为一棵树是一个组,树的根节点用来代表这个组。

3.2.初始化

初始化时,我们认为每个元素都是独立的组,每个元素都是自己组的代表

int par[maxn]; //存储一个元素的父亲
void init(int n){
    for(int i = 0; i < n; i++)
        par[i] = i; //代表是自己,注意这里使用的是索引
}

3.3.查询

因为使用根节点来代表一个组,我们查询时查的是当前组的代表元素,因此我们应该找到根节点,也就是当前节点的祖先(父亲的父亲的父亲…)

int find(int x){
    if(par[x] == x) return x; // 根节点的父亲是他自己
    return find(par[x]) //通过递归得找父亲节点来找根节点
}

我们递归查找可能会比较慢,可以使用路径压缩的方法,将一个元素直接挂在他的祖先(根节点)的下面,而不是父亲的下面
在这里插入图片描述

int find(int x){
    if(par[x] == x) return x;
    return par[x] = find(par[x]);
}

3.4.合并

把一个分组的根挂到另一个分组的根
在这里插入图片描述

bool unite(int x, int y){ // 返回是否合并成功
    x = find(x);
    y = find(y);
    if(x == y) return false; // 合并失败,本来就在一个组中
    par[x] = y; // x所在组挂在y所在组下,反过来也行
    return true;
}

4.最小生成树

4.1.Kruskal

每次贪心地尝试将图中最小的非树边标记为树边,非法则跳过。

  • 将全部边按照权值由小到大排序
  • 按顺序(边权由小到大)考虑每条边。只要这条边和我们已经选择的边不构成圈,就保留。否则放弃这条边
  • 成功选择 (n - 1)条边后,就生成一棵最小生成树。如果无法选出 (n - 1)条边,则原图不连通

4.2.Prim

是基于点的贪心算法,其核心思想是:维护一个连通点集,每次都从不在该点集内的点中,选出一个连通该点集的代价最小的点加入这个点集。

简单来说,就是维护一个当前的联通图,每次找一个与当前图中的端点连通的最短的边加入。

4.3.例题

使用 Kruskal 算法求解 P3366 【模板】最小生成树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

#include<bits/stdc++.h>
using namespace std;
struct Edge{
    int u, v, w;
}Edges[200005]; // 存储边的信息
int par[5005]; // 用于实现并查集
int tot = 0;

bool cmp(Edge a, Edge b){ // 按权重排序边时使用
    return a.w < b.w;
}

int find_par(int x){ // 并查集的查找
    if(par[x] == x) return x;
    return par[x] = find_par(par[x]);
}

bool add(int x, int y){ // 并查集合并
    x = find_par(x);
    y = find_par(y);
    if(x == y) return false;
    par[x] = y;
    return true;
}

int main()
{
    int n , m;
    cin >> n >> m;
    int u_, v_, w_;
    int cnt = 0;
    int ans = 0;
    for(int i = 0; i < n; i++)
        par[i] = i;
    for(int i = 1; i <= m; i++)
        cin >> Edges[tot].u >> Edges[tot].v >> Edges[tot++].w;

    sort(Edges, Edges + m - 1, cmp); // 按权重从小到大排序
    for(int i = 0; i < m; i++){
        if(add(Edges[i].u, Edges[i].v)){ // 一条边的两个端点在同一组,则成环,否则可以加入
            cnt++;
            ans += Edges[i].w;
        }
        if(cnt == n - 1){
            cout << ans;
            return 0;
        }
    }
    cout << "orz";
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长命百岁️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值