【论文阅读】Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value of

该文章提出了一种基于神经网络的模型,通过预计问题答案的有用性来对问题进行排序。模型利用了预期信息价值理论,通过估计问题对回答的增益来评估问题的价值。训练过程中,模型和实用函数被联合训练,以最小化损失函数。问题和答案的候选生成器使用类似帖子的问题和编辑作为候选集。最终目标是优化答案模型和效用计算器,使得答案对帖子的增益最大化且与问题匹配度高。
摘要由CSDN通过智能技术生成

前言

Model

We build a neural network model inspired by the theory of expected value of perfect information (EVPI).

The value of this question q i q_i qi is the expected utility, over all possible answers:

在这里插入图片描述

  • p p p is the post
  • q i q_i qi is a potential question from a set of candidate questions Q Q Q and a j a_j aj is a potential answer from a set of candidate answers A A A
  • p [ a j ∣ p , q i ] p[a_j|p,q_i] p[ajp,qi] measures the probability of getting an answer a j a_j aj given an initial post p p p and a clarifying question q i q_i qi,
  • U ( p + a j ) U(p+a_j) U(p+aj) is a utility function that measures how much more complete p p p would be if it were augmented with answer a j a_j aj .

在这里插入图片描述

The modeling question then is how to model:

  • The probability distribution P [ a j ∣ p , q i ] P[a_j |p, q_i] P[ajp,qi]
  • The utility function U ( p + a j ) U(p + a_j ) U(p+aj).

We train the parameters of the two models jointly to minimize a joint loss defined such that an answer that has a higher potential of increasing the utility of a post gets a higher probability

Question&answer candidate generator

Given a post p, we find similar posts(use Lucene) and their questions.

  • we find the top 10 posts(contain the original post itself) most similar posts
  • consider the questions asked to these 10 posts as our set of question candidates Q Q Q and the edits made to the posts in response to the questions as our set of answer candidates A A A

Joint training

The training loss function is:

在这里插入图片描述

  • use GloVe to get word embeddings
  • q ^ , a ^ \hat{q}, \hat{a} q^,a^ are obtained by averaging the GloVe word embeddings for all words in the question and the answer respectively
  • p ˉ , q ˉ , a ˉ \bar{p},\bar{q},\bar{a} pˉ,qˉ,aˉ are obtained by post LSTM, question LSTM and answer LSTM
    • The input layer consists of word embeddings of the words which is fed into a single hidden layer. The output of each of the hidden states is averaged together to get our neural representation
  • F a n s F_{ans} Fans is a feedforward neural network with five hidden layers on the inputs p ˉ \bar{p} pˉ and q ˉ \bar{q} qˉ
  • F u t i l F_{util} Futil is a feedforward neural network with five hidden layers on the inputs p ˉ \bar{p} pˉ and q ˉ \bar{q} qˉ and a ˉ \bar{a} aˉ

We train the three LSTMs and two feedforward networks jointly to minimize the sum of the loss of the answer model and the utility calculator over the entire dataset:

Answer modeling

The likelihood of an answer candidate a j a_j aj being the answer to a question q i q_i qi on post p p p is

在这里插入图片描述

where F a n s ( p , q i ) F_{ans}(p,q_i) Fans(p,qi) is the answer representation and

在这里插入图片描述

We model our answer generator using the following intuition

  • a question can be asked in several different ways
  • for a given post and a question, there can be several different answers to that question

The loss function is:

在这里插入图片描述

在这里插入图片描述

The answer representation is not only close to its original answer but also to one of its candidate answers if the candidate question is close to the original question

Utility calculator

This utility function measures how useful it would be if a given post p p p were augmented with an answer a j a_j aj paired with a different question q j q_j qj in the candidate set. A

We train our utility calculator using our dataset of (p, q, a) triples

  • For each a j ∈ A i a_j \in A_i ajAi, where A i A_i Ai is the set of answer candidates for post p i p_i pi, we label the pair ( p i , q j , a j ) (p_i,q_j,a_j) (pi,qj,aj) with label y = 0, except for when a j = a i a_j = a_i aj=ai(label = 1)
  • Thus, for each post p i p_i pi in our triples dataset, we have one positive sample and nine negative samples

We want this utility to be close to 1 for all the positively labelled (p, q, a) triples and close to 0 for all the negatively labelled (p, q, a) triples.

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长命百岁️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值