Ubuntu重装配置文档

初始化配置

更换国内软件源:软件更新器

安装git:sudo apt install git
查看linux版本:lsb_release -a
时间同步设置

sudo apt update    
sudo apt install ntpdate
sudo ntpdate time.windows.com
sudo hwclock --localtime --systohc

显示屏息屏时间设置
修改开关机时间:

sudo nano /etc/systemd/system.conf
删除注释符号并修改时间:DefaultTimeoutStopSec=10s
按 Ctrl + O 保存更改,然后按 Enter 确认。
按 Ctrl + X 退出编辑器`
sudo systemctl daemon-reload

修改grub启动项:
    sudo nano /etc/default/grub
    第一项:默认启动项,可以设置对应数字修改初始光标选项为2,即第三项windows
    sudo update-grub
软件包更新:sudo apt update
软件包升级:sudo apt upgrade

更新软件列表:    sudo apt-get update
安装g++:    sudo apt-get install g++
安装gcc:    sudo apt-get install gcc
安装make:    sudo apt-get install make

终端窗口
    安装:sudo apt install terminator
        使用:ctrl+shift+O横向/E纵向/W关闭
        移动:Alt+方向键

VScode配置

    官网下载deb软件包: 搜索vscode
       安装:sudo dpkg -i code_1.94.2-1728494015_amd64.deb
        启动:code
        添加到收藏夹
        安装插件:    
            chinese-简体中文
        ros-Microsoft(包括C++和oython)    
        cMake Tools    
        bracket(无需安装,已内置)
        comment Translate
        Error Lens
        Path Intellisense
        Image preview
    设置编译快捷键:ctrl+shift+B,选择catkin_make:build,编译完成后按下任意键即可关闭终端窗口
    在src项,ctrl+shift+B在catkin_make:build齿轮设置处打开tasks.json文件:修改"group": {"kind":"build","isDefault": true}
    设置拼写错误检查:
        找不到头文件报错,删除c_cpp_properties.json文件,重新打开VScode会自动加载c_cpp_properties.json
        禁用红色波浪线:ctrl+shift+P打开搜索栏,输入error squiggles,选择禁用Disabled,恢复错误提示则修改settings文件中为enabled

cuda安装

    查看版本:nvcc -V、nvcc --version
    安装包:wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
    sudo sh cuda_11.8.0_520.61.05_linux.run
    选择continue
    space取消nvidia driver,方向键选择install
    gedit ~/.bashrc
    最后插入下面两行,注意版本号
        export PATH=/usr/local/cuda-11.8/bin:${PATH}
        export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:${LD_LIBRARY_PATH}
    source ~/.bashrc

cuDNN安装:

https://developer.nvidia.com/rdp/cudnn-archive

    放到主目录解压

tar -xvf cudnn-linux-x86_64-8.9.6.50_cuda11-archive.tar.xz
sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include
sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

    可以删除主目录的文件夹
    查看版本号:sudo cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

anaconda3安装与配置

anaconda3安装

chmod +x Anaconda3-2024.06-1-Linux-x86_64.sh
    bash Anaconda3-2024.06-1-Linux-x86_64.sh
    说明协议书不断enter或Q选择yes,路径默认enter,conda init初始化yes
    source  ~/.bashrc
    查看Anaconda中已存在的镜像源:
        conda config --show channels
    永久添加镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/

    设置搜索时显示的通道地址:
        conda config --set show_channel_urls yes

anaconda3配置

source activate test                         初始化激活环境
conda config --set auto_activate_base true    开启自动激活
conda remove -n test --all                   删除环境

anaconda3操作

conda config --set auto_activate_base false    关闭自动激活
conda create -n test python=3.10               创建环境
conda env list                                 查看环境
conda activate test                            激活环境
conda deactivate test                          关闭环境

pytorch安装(在对应环境中安装):

    https://pytorch.org/get-started/previous-versions/
    conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 pytorch-cuda=11.8 -c pytorch -c nvidia
    python指令检测
 

python
# 导入torch包
 import torch
# 查看pytorch的版本号(version前后各有2个_)
torch.__version__
# 查看CUDA是否可用(GPU是否可用)
# `如果下面的命令输出的结果显示为False,则安装的可能是cpu版本的pytorch,可通过下面方法进行解决`
torch.cuda.is_available()
# 查看当前使用的GPU序号
torch.cuda.current_device()
# 查看可用的GUDA数量(GPU数量)
torch.cuda.device_count()
# 查看cuda版本号
torch.version.cuda
# 查看cnDNN版本号
torch.backends.cudnn.version()
# 如果上述命令均没问题,则GPU版本的PyTorch等安装成功,退出当前的Python开发环境即可
exit()

jupyter及相关软件包安装

        conda install jupyter    (使用conda安装)
        jupyter notebook
        conda install matplotlib

环境不匹配问题:
        pip install "numpy<2"
        选择编译器:ctrl+shift+P 选择conda环境Python: Select Interpreter
安装opencv与seaborn:
        切换到虚拟环境中
        conda install -c conda-forge opencv seaborn matplotlib
        验证opencv是否可用        
        import cv2
        print(cv2.__version__)

其他疑难杂症

中英文输入法切换:win+空格
    
搜狗输入法:https://blog.csdn.net/qq_32892383/article/details/141458781    

硬盘图标问题:在外观-dock-配置dock行为

网络代理器(最后安装,而且其他安装时不要开这个):
    sudo dpkg -i clash-verge_1.7.7_amd64.deb

wps    sudo cp wps-fonts/* /usr/share/fonts/wps-office/
蓝牙故障问题:
sudo apt update && sudo apt upgrade -y
sudo apt install bluez bluez-firmware pulseaudio-module-bluetooth
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值