杜芬振荡器

特此申明:此文内容来自:Scholarpedia,具体网址在文末,本人只是将其翻译一下。

杜芬振子是具有非线性弹性的周期性受迫振子的一个例子,公式表示为:

(1)

其中阻尼常数服从δ≥0,它也被称为产生混沌的简单模型,以及范德堡尔振荡器。

图1

物理意义:

对于β>0, Duffing振子可以解释为带弹簧的受迫振子,其恢复力记为F=−βx−αx3,如图2所示。当α>0时,这个弹簧被称为硬化弹簧,当α<0时,它被称为软化弹簧,尽管这种解释只对小x有效。

图2

图3

当β<0时,Duffing振子描述了双阱势中一个点质量的动力学,它可以被看作是一个周期性被迫向两个磁体偏转的钢梁模型,如图3所示。众所周知,在这种情况下可以观察到混沌运动(见下文)。

分析:

非受迫系统

在本节中,研究了非强迫系统(γ=0)的动力学。当无阻尼时(δ=0), Duffing方程可积分为

因此,在这种情况下,Duffing方程是一个哈密顿系统。α>0时E(t)的形状如图4所示,可以观察到β>0时E(t)是单孔势,β<0时E(t)是双孔势。x≡(x,x˙)的轨迹在E(t)表面上移动,保持E(t)不变。

当δ>0时,E(t)满足

因此,x的轨迹在E(t)的表面上移动,使得E(t)减小,直到x收敛于其中一个x˙=0的平衡,如图4所示。对于α>0, β>0和δ>0,唯一的平衡是x¯≡(0,0),E(t)满足

因此,E(t)是一个李雅普诺夫函数,在这种情况下x¯是全局渐近稳定的。另一方面,对于α>0、β<0和δ>0,存在如图4所示的三个平衡,其中两个在E(t)的底部,一个在其峰值。在这种情况下,除了峰值平衡的稳定流形上的初始条件外,几乎所有的初始条件都收敛于底部的一个平衡。

图4

将x˙=0代入式(1),即可得到γ=0时Duffing振子的平衡,即:

因此,x=0点总是一个平衡点。此外,当αβ<0时,出现两个平衡x=±√−β/α。这些平衡的稳定性可以通过分析方程的雅可比矩阵的特征值来理解。γ=0时的式(1)可以改写为

右边的雅可比矩阵DF(x)计算为

因此,平衡x=0时DF(x)的特征值为

当β≥0时,该平衡是稳定的,当β<0时,该平衡是不稳定的。另一方面,x=±√−β/α平衡的特征值为

发现α>0和β<0时平衡稳定,α<0和β>0时平衡不稳定。

弱强迫系统:非线性共振

这里我们考虑了Duffing振子对弱周期强迫的响应。首先,对eq.(1)进行变换β=ω20, α→ϵα, γ→ϵγ, δ→ϵδ,得到

(2)

由于β=ω20≥0,式(2)描述了弱非线性弹簧对弱周期强迫的响应。在下文中,我们找到了频率ω-ω0的近似正弦解。

首先,我们引入范德波尔变换,其形式为

(3)

(4)

如图5所示,(u,v)平面即范德波尔平面顺时针绕(x,x˙/ω)平面旋转。在这个平面上,频率ω的(x,x˙/ω)的正弦解表示为平衡态。对式(3)和式(4)求导,将式(2)和ω2−ω20≡ϵΩ代入,得到

(5)

(6)

平均方程式。(5)和(6)在2π/ω的周期内,我们得到

或者,在极坐标r=√u2+v2和φ =arctan(v/u)下,

(7)

(8)

图5

图6

通过求式(7)和式(8)的平衡,可以分析系统对弱周期力的响应。如图6所示,当α=0时,频响函数在ω-ω0处出现了一个常见谐振峰,当α≠0时,该峰呈曲线状。对于硬化弹簧(α>0),峰值向右弯曲,而对于软化弹簧(α<0),峰值向左弯曲。霍尔姆斯和兰德(1976)给出了平衡的解析表达式。

利用以频率ω/k旋转的范德波尔平面,定义ω2−k2ω20≡ϵΩ,也可以分析k阶次谐波。

混沌

为了考察系统对周期强迫的响应,可以方便地将式(1)改写为

其中ψ(0)=0。也可以方便地考虑ψ轴描述如图7所示的圆,因为变量ψ可以被视为2π-周期性。当系统穿过Poincaré截面ψ=ψ0(const.)时,通过绘制(x,x˙),可以得到一个混沌吸引子来寻找合适的参数值。当ψ0从0增加到2π时,这种混沌吸引子的周期变化如图1和图8所示,它们显示了混沌的拉伸和折叠性质。特别地,图8中的参数值与Yoshisuke Ueda在1961年(Ueda, 1979,1980, 1992)发现混沌时使用的参数值相同。有关杜芬振荡器中的混沌的更多信息,请参见,例如,Holmes (1979), Moon和Holmes (1979), Holmes和Whitley (1983), Guckenheimer和Holmes(1983),以及Thompson和Stewart(2002)。

图7

图8

注:

图7:通过获取Poincaré部分(在本例中,ψ=0),就会出现一个混沌吸引子。

图8:当α=1, β=0, δ=0.05, γ=7.5, ω=1时Duffing振子混沌吸引子的周期性变化。通过将不同相位ψ≡t mod 2π的轨迹的Poincaré段集合起来,Duffing振子的吸引子会周期性地变化(参见图7)。请注意,使用的参数值与上田吉佑1961年发现混沌时使用的参数值相同。

文章引用于: Duffing oscillator - Scholarpedia

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值