质数的判断

本文详细介绍了三种算法:试除法判断质数、埃氏筛法和线性筛法。试除法通过遍历2到根号n之间的数判断是否能整除;质因数分解利用算术基本定理,找到并输出所有质因数及其指数;筛法用于找出一定范围内的所有质数,朴素筛法效率较低,埃氏筛法和线性筛法则更优,线性筛法尤其高效,仅需遍历一次即可。
摘要由CSDN通过智能技术生成

Acwing 866 试除法判断是否为质数

地址:

描述:

代码:

Acwing867 分解质因数

地址:

描述:

思想:

代码:

Acwing868筛质数(朴素、埃氏、线性筛)

地址:

描述:

思想:

朴素版:

埃氏:

线性筛法:

代码:

朴素:O(nlogn)

埃氏:O(nloglogn)

线性筛:


Acwing 866 试除法判断是否为质数

地址:

https://www.acwing.com/problem/content/description/868/

描述:

 

代码:

#include <iostream>
using namespace std;
int n;
//试除法
bool isPrime (int x){
    if(x<2) return false ;
    for(int i=2;i<=x/i;i++){
        if(x%i==0) return false ;
    }
    return true;
}
int main(){
    cin>>n;
    for(int i=0;i<n;i++){
        int a;
        cin>>a;
        if(isPrime(a)) cout<<"Yes"<<endl;
        else cout<<"No"<<endl;
    }
    return 0;
}

Acwing867 分解质因数

地址:

https://www.acwing.com/problem/content/description/869/

描述:

 

思想:

根据算术基本定理,不考虑排列顺序的情况下,每个正整数都能够以唯一的方式表示成它的质因数的乘积。
n=p1^a1 * p2^a2 *p3^a3.....pn^an
比如一个数16 在分解时先找到2这个质因子,然后由于16/2后还可以/2,所以会在2这个质因子上产生次方

不优化版本:从2~n 找到能整除的因子然后算次方
这里有个性质:n中最多只含有一个大于sqrt(n)的因子。证明通过反证法:如果有两个大于sqrt(n)的因子,那么相乘会大于n,矛盾。证毕
于是我们发现最多只有一个大于sqrt(n)的因子,对其进行优化。先考虑比sqrt(n)小的,代码和质数的判定类似
最后如果n还是>1,说明这就是大于sqrt(n)的唯一质因子,输出即可。

代码:

#include <iostream>
using namespace std;
int n;
void fen(int x){
    //i一定是质数
    for(int i=2;i<=x/i;i++){
        if(x%i==0){
        int s=0;
        while(x%i==0)
        {
            x/=i;
            s++;
        }
          cout<<i<<" "<<s<<endl;
        }
    }
    if(x>1) cout<<x<<" "<<1<<endl;
}
int main(){
    cin>>n;
    for(int i=0;i<n;i++){
        int a;
        cin>>a;
        fen(a);
        cout<<endl;
    }
    return 0;
}

Acwing868筛质数(朴素、埃氏、线性筛)

地址:

https://www.acwing.com/problem/content/description/870/

描述:

 

思想:

朴素版:

不管是合数还是质数都拿来去除它后面的倍数

埃氏:

只需要用质数来删除它后面的倍数

线性筛法:

核心思想:n只会被它的最小质因子删除。

问题一:怎么保证primes[j]是最小质因子?

st[primes[j]*i]=true;//用最小质因子去筛合数

 分两种情况讨论:

  1. 当i%primes[j]!=0时,说明此时遍历到的primes[j]不是i的质因子,那么只可能是此时的primes[j]<i的最小质因子,所以primes[j]*i的最小质因子就是primes[j];
  2. 当有i%primes[j]==0时,说明i的最小质因子是primes[j],因此primes[j]*i的最小质因子也就应该是prime[j]

问题二:为什么需要break?

 if(i%primes[j]==0) break;

之后接着用st[primes[j+1]*i]=true去筛合数时,就不是用最小质因子去更新了,因为i有最小质因子primes[j]<primes[j+1],此时的primes[j+1]不是primes[j+1]*i的最小质因子,此时就应该退出循环,避免之后重复进行筛选。

例子:

代码:

朴素:O(nlogn)

void get_primes2(){
    for(int i=2;i<=n;i++){

        if(!st[i]) primes[cnt++]=i;//把素数存起来
        for(int j=i;j<=n;j+=i){//不管是合数还是质数,都用来筛掉后面它的倍数
            st[j]=true;
        }
    }
}

埃氏:O(nloglogn)

void get_primes1(){
    for(int i=2;i<=n;i++){
        if(!st[i]){
            primes[cnt++]=i;
            for(int j=i;j<=n;j+=i) st[j]=true;//可以用质数就把所有的合数都筛掉;
        }
    }
}

线性筛:

void get_primes(){
    //外层从2~n迭代,因为这毕竟算的是1~n中质数的个数,而不是某个数是不是质数的判定
    for(int i=2;i<=n;i++){
        if(!st[i]) primes[cnt++]=i;
        for(int j=0;primes[j]<=n/i;j++){
//primes[j]<=n/i:变形一下得到——primes[j]*i<=n,把大于n的合数都筛了就没啥意义了
            st[primes[j]*i]=true;//用最小质因子去筛合数
            if(i%primes[j]==0) break;
        }
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值