Acwing 866 试除法判断是否为质数
地址:
https://www.acwing.com/problem/content/description/868/
描述:
代码:
#include <iostream>
using namespace std;
int n;
//试除法
bool isPrime (int x){
if(x<2) return false ;
for(int i=2;i<=x/i;i++){
if(x%i==0) return false ;
}
return true;
}
int main(){
cin>>n;
for(int i=0;i<n;i++){
int a;
cin>>a;
if(isPrime(a)) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
return 0;
}
Acwing867 分解质因数
地址:
https://www.acwing.com/problem/content/description/869/
描述:
思想:
根据算术基本定理,不考虑排列顺序的情况下,每个正整数都能够以唯一的方式表示成它的质因数的乘积。
n=p1^a1 * p2^a2 *p3^a3.....pn^an
比如一个数16 在分解时先找到2这个质因子,然后由于16/2后还可以/2,所以会在2这个质因子上产生次方
不优化版本:从2~n 找到能整除的因子然后算次方
这里有个性质:n中最多只含有一个大于sqrt(n)的因子。证明通过反证法:如果有两个大于sqrt(n)的因子,那么相乘会大于n,矛盾。证毕
于是我们发现最多只有一个大于sqrt(n)的因子,对其进行优化。先考虑比sqrt(n)小的,代码和质数的判定类似
最后如果n还是>1,说明这就是大于sqrt(n)的唯一质因子,输出即可。
代码:
#include <iostream>
using namespace std;
int n;
void fen(int x){
//i一定是质数
for(int i=2;i<=x/i;i++){
if(x%i==0){
int s=0;
while(x%i==0)
{
x/=i;
s++;
}
cout<<i<<" "<<s<<endl;
}
}
if(x>1) cout<<x<<" "<<1<<endl;
}
int main(){
cin>>n;
for(int i=0;i<n;i++){
int a;
cin>>a;
fen(a);
cout<<endl;
}
return 0;
}
Acwing868筛质数(朴素、埃氏、线性筛)
地址:
https://www.acwing.com/problem/content/description/870/
描述:
思想:
朴素版:
不管是合数还是质数都拿来去除它后面的倍数
埃氏:
只需要用质数来删除它后面的倍数
线性筛法:
核心思想:n只会被它的最小质因子删除。
问题一:怎么保证primes[j]是最小质因子?
st[primes[j]*i]=true;//用最小质因子去筛合数
分两种情况讨论:
- 当i%primes[j]!=0时,说明此时遍历到的primes[j]不是i的质因子,那么只可能是此时的primes[j]<i的最小质因子,所以primes[j]*i的最小质因子就是primes[j];
- 当有i%primes[j]==0时,说明i的最小质因子是primes[j],因此primes[j]*i的最小质因子也就应该是prime[j]
问题二:为什么需要break?
if(i%primes[j]==0) break;
之后接着用st[primes[j+1]*i]=true去筛合数时,就不是用最小质因子去更新了,因为i有最小质因子primes[j]<primes[j+1],此时的primes[j+1]不是primes[j+1]*i的最小质因子,此时就应该退出循环,避免之后重复进行筛选。
例子:
代码:
朴素:O(nlogn)
void get_primes2(){
for(int i=2;i<=n;i++){
if(!st[i]) primes[cnt++]=i;//把素数存起来
for(int j=i;j<=n;j+=i){//不管是合数还是质数,都用来筛掉后面它的倍数
st[j]=true;
}
}
}
埃氏:O(nloglogn)
void get_primes1(){
for(int i=2;i<=n;i++){
if(!st[i]){
primes[cnt++]=i;
for(int j=i;j<=n;j+=i) st[j]=true;//可以用质数就把所有的合数都筛掉;
}
}
}
线性筛:
void get_primes(){
//外层从2~n迭代,因为这毕竟算的是1~n中质数的个数,而不是某个数是不是质数的判定
for(int i=2;i<=n;i++){
if(!st[i]) primes[cnt++]=i;
for(int j=0;primes[j]<=n/i;j++){
//primes[j]<=n/i:变形一下得到——primes[j]*i<=n,把大于n的合数都筛了就没啥意义了
st[primes[j]*i]=true;//用最小质因子去筛合数
if(i%primes[j]==0) break;
}
}
}