字串分值
题目描述
对于一个字符串S,我们定义S 的分值 f(S) 为S中恰好出现一次的字符个数。例如f (”aba”) = 1,f (”abc”) = 3,
f (”aaa”) = 0。 现在给定一个字符串S[0…n-1](长度为n),请你计算对于所有S的非空子串S[i…j](0 ≤ i ≤ j
< n), f (S[i… j]) 的和是多少。
输入
输入一行包含一个由小写字母组成的字符串S。
输出
输出一个整数表示答案。
样例输入
ababc
样例输出
21
提示
样例说明:
子串f值:
a 1
ab 2
aba 1
abab 0
ababc 1
b 1
ba 2
bab 1
babc 2
a 1
ab 2
abc 3
b 1
bc 2
c 1
对于20% 的评测用例,1 ≤ n ≤ 10;
对于40% 的评测用例,1 ≤ n ≤ 100;
对于50% 的评测用例,1 ≤ n ≤1000;
对于60% 的评测用例,1 ≤ n ≤ 10000;
对于所有评测用例,1 ≤ n ≤ 100000。
时间超限
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int num[30];
int sum = 0;
void judge(string str){
for(int i = 0; i < str.size(); i++){
int t = str[i] - 97;
num[t]++;
}
for(int i = 0; i < 26; i++){
if(num[i] == 1){
sum++;
}
}
}
int main(){
string str;
cin >> str;
for(int i = 0; i < str.size(); i++){
for(int j = i; j <str.size(); j++){
// memset(num,0,sizeof(num));
fill(num, num + 30, 0);
judge(str.substr(i,j - i + 1));
// cout << str.substr(i,j - i + 1) << endl;
}
}
cout << sum;
}
❤️❤️❤️
C++截取字符串
#include<string>
函数库中
函数原型:
string substr(int pos = 0,int n ) const;
函数说明:
参数1:pos是必填参数
参数2:n是可参数,表示取多少个字符,不填表示截取到末尾
该函数功能为:返回从pos开始的n个字符组成的字符串,原字符串不被改变
#include <iostream>
#include <string>
using namespace std ;
void main()
{
string str="Believe";
cout << str.substr(2) <<endl ; //从字符串下标为2的地方开始截取,截取到末尾,输出lieve
cout << s.substr(0,2) <<endl ; //从字符串下标为0的地方开始截取,截取长度为2,输出Be
cout << s.substr(1,2) <<endl ; //输出el
}
memset
对每个字节赋值
比如int有4个字节,
memset(num,1,sizeof(num));
00000001000000010000000100000001
对于对int之类的数组,只能用memset对其初始化为0或-1。
而对于char型,可以赋任何字符。
fill()函数的用法
fill()函数参数:fill(first,last,val);
first 为容器的首迭代器,last为容器的末迭代器,val为将要替换的值。fill赋任何值都可以
整除序列
题目描述
有一个序列,序列的第一个数是 ,后面的每个数是前一个数整除 2,请输出这个序列中值为正数的项。
输入
输入一行包含一个整数 。
输出
输出一行,包含多个整数,相邻的整数之间用一个空格分隔,表示答案。
样例输入
20
样例输出
20 10 5 2 1
提示
对于 80% 的数据,1 < n < 10的9次方 。
对于 100% 的数据,1 < n < 10的18 。
#include<bits/stdc++.h>
using namespace std;
#include<vector>
vector<long long> v;
int main(){
long long n;
cin >> n;
while(n){
v.push_back(n);
n = n / 2;
}
for(auto a : v){
cout << a << " ";
}
}
注意取值范围
必须用long long ,刚开始用int,直接错
解码
题目描述
小明有一串很长的英文字母,可能包含大写和小写。在这串字母中,有很多连续的是重复的。小明想了一个办法将这串字母表达得更短:将连续的几个相同字母写成字母 + 出现次数的形式。
例如,连续的 5 个 a ,即 aaaaa ,小明可以简写成 a5 (也可能简写成 a4a 、 aa3a 等)。 对于这个例子:HHHellllloo,小明可以简写成 H3el5o2 。为了方便表达,小明不会将连续的超过 9 个相同的字符写成简写的形式。
现在给出简写后的字符串,请帮助小明还原成原来的串。
输入
输入一行包含一个字符串。
输出
输出一个字符串,表示还原后的串。
样例输入
H3el5o2
样例输出
HHHellllloo
提示
对于所有评测用例,字符串由大小写英文字母和数字组成,长度不超过 100 。 请注意原来的串长度可能超过 100 。
思路:判断字符串的每一位,如果是字母直接打印输出,如果是数字,就将字符先转成数字,然后循环输出k - 1;
#include<bits/stdc++.h>
using namespace std;
char c[1000];
int main(){
string str;
cin >> str;
int t = 0;
for(int i = 0; i < str.size(); i++){
if(str[i] > '0' && str[i] <= '9'){
int j = str[i] - '0';
for(int k = 0; k < j - 1; k++){
c[t++] = str[i - 1];
}
}
else{
c[t++] = str[i];
}
}
for(int i = 0; i < t; i++){
cout << c[i];
}
}
相关:
字符串常用函数:
❤️❤️❤️
核心思想:
整数转化为字符:加 ‘0’ ,然后逆序。
字符转化整数:减 ‘0’
注:整数加 ‘0’后会隐性的转化为char类型;字符减 ‘0’隐性转化为int类型
走方格
一道题简单理解dfs和动态规划
题目描述
在平面上有一些二维的点阵。
这些点的编号就像二维数组的编号一样,从上到下依次为第 1 至第 行,从左到右依次为第 1 至第 列,每一个点可以用行号和列号来表示。
现在有个人站在第 1 行第 1 列,要走到第 行第 列。
只能向右或者向下走。
注意,如果行号和列数都是偶数,不能走入这一格中。
问有多少种方案。
输入
输入一行包含两个整数n,m。
输出
输出一个整数,表示答案。
样例输入
3 4
样例输出
2
提示
1 <= n,m <= 30
解题(一)DFS
注意本题只有两个方向,开方向数组的时候2个就够。开4个的话时间超限。
直接套用DFS模板就行
#include<bits/stdc++.h>
using namespace std;
int a[31][31];
int book[31][31];
int dx[4] = {0,1};
int dy[4] = {1,0};
int num,n,m;
void dfs(int x,int y){
int tx,ty ,k;
if(x == n && y == m){
num ++;
return ;
}
for(int k = 0; k < 2; k++){
tx = x + dx[k];
ty = y + dy[k];
if(tx < 1 || tx > n || ty < 1 || ty > m){
continue;
}
if(book[tx][ty] == 0 && a[tx][ty] ==0){
book[tx][ty] = 1;// 标记为已访问
dfs(tx,ty);
book[tx][ty] = 0; // 回溯
}
}
}
int main(){
cin >> n >> m;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(i % 2 == 0 && j % 2 == 0){
a[i][j] = 1;
}
}
}
book[1][1] = 1;
dfs(1,1);
cout << num;
}
方法(二) 动态规划
每个当前状态由可能前面的两种状态推出来,因此状态方程如下:
#include<bits/stdc++.h>
using namespace std;
int dp[31][31];
int main(){
int n,m;
cin >> n >> m;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(i == 1 && j == 1){
dp[1][1] = 1;
continue;
}
if(i % 2 == 0 && j % 2 == 0) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
cout << dp[n][m];
}