对抗样本(FGSM,BIM)

1.FGSM

FGSM(fast gradient sign method)是一种基于梯度生成对抗样本的算法,属于对抗攻击中的无目标攻击(即不要求对抗样本经过model预测指定的类别,只要与原样本预测的不一样即可)

在平时求解损失函数的时候,都是最小化损失函数,在梯度的反方向移动,符号使用减号,也就是所谓的梯度下降算法;FGSM可以理解为梯度上升算法,也就是使用加号,使得损失函数最大化。

上面是FGSM的公式,和dp神经网络类似,但是是一个反向的逆过程。

2.BIM

BIM,即基本迭代法,在FGSM基础上加上了迭代操作。

回顾之前的FGSM的公式,攻击的样本是经过单次的调整得到的,其中的e值是手动设定的。

但是BIM的方法本质是在FGSM的基础上加了一层的for循环迭代。

为什么会使用BIM?

是因为FGSM的使用,基于假设模型是高度线性化的,所以梯度上升的方向就是最佳方向,也就是使目标函数损失值最大的方向。BIM就是按照e的步调去梯度上升。

Fast Gradient Sign Method (FGSM) 是一种用于生成对抗样本的基本方法,它利用了梯度信息来最小幅度地修改输入数据,使其对模型的预测产生误导。在 Python 中,你可以使用深度学习库如 TensorFlow 或 PyTorch 来实现 FGSM。以下是一个简化的示例,用 TensorFlow 来展示如何在 Keras API 中应用 FGSM: ```python import tensorflow as tf from tensorflow.keras import layers, models # 假设我们有一个简单的线性模型 def create_model(input_shape): model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=input_shape)) model.add(layers.Dense(1, activation='sigmoid')) return model # 加载预训练模型或根据需求创建 model = create_model((28, 28, 1)) # 假设我们有一个图片和标签 input_data = tf.keras.Input(shape=(28, 28, 1)) label = tf.keras.Input(shape=(), dtype='float32') # 单分类问题,如果多分类则应为 int32 类型 # 使用模型并获取损失值 logits = model(input_data) loss = tf.keras.losses.binary_crossentropy(label, logits) # 获取梯度 grads = tf.gradients(loss, input_data) # FGSM 函数 def fgsm_attack(image, label, epsilon=0.1): perturbed_image = image + epsilon * tf.sign(grads) perturbed_image = tf.clip_by_value(perturbed_image, 0, 1) # 确保图像像素值在 [0, 1] 区间内 return perturbed_image # 示例使用 epsilon = 0.1 # 攻击强度 perturbed_image = fgsm_attack(input_data, label, epsilon) pred = model(perturbed_image) # 预测受影响的图片 # 注意:在实际应用中,你需要先将模型转换为可训练模式(.trainable=True),这里为了简洁省略了这部分 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值