1.FGSM
FGSM(fast gradient sign method)是一种基于梯度生成对抗样本的算法,属于对抗攻击中的无目标攻击(即不要求对抗样本经过model预测指定的类别,只要与原样本预测的不一样即可)
在平时求解损失函数的时候,都是最小化损失函数,在梯度的反方向移动,符号使用减号,也就是所谓的梯度下降算法;FGSM可以理解为梯度上升算法,也就是使用加号,使得损失函数最大化。
上面是FGSM的公式,和dp神经网络类似,但是是一个反向的逆过程。
2.BIM
BIM,即基本迭代法,在FGSM基础上加上了迭代操作。
回顾之前的FGSM的公式,攻击的样本是经过单次的调整得到的,其中的e值是手动设定的。
但是BIM的方法本质是在FGSM的基础上加了一层的for循环迭代。
为什么会使用BIM?
是因为FGSM的使用,基于假设模型是高度线性化的,所以梯度上升的方向就是最佳方向,也就是使目标函数损失值最大的方向。BIM就是按照e的步调去梯度上升。