对抗样本之BIM原理&coding

本文介绍了基于PyTorch实现的基本迭代方法(BIM)生成对抗样本的过程,包括模型训练、BIM原理和代码实现。BIM通过多次小步长的梯度上升寻找最优扰动,用于欺骗神经网络。在MNIST数据集上训练了一个简单的LeNet模型,并展示了对抗样本的生成及可视化结果,证明了BIM的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 引言

  • BIM,即基本迭代法,在FGSM基础上加上了迭代操作。想看FGSM,跳转
  • 理解了FGSM,相信对BIM会丝毫没有压力。各位看官大多还是奔着代码去的吧,这里核心讲下代码。
  • 使用pytorch实现BIM。pytorch不会?跳转

2 BIM原理

  • 对比
  1. FGSM公式
    在这里插入图片描述
  2. BIM公式
    在这里插入图片描述
  • 如上,BIM与FGSM真就是一个for循环的区别。但为什么BIM也能发论文呢?BIM存在其数学理论的合理性以及实验效果表现良好
  • FGSM的使用,基于作者假设模型是高度线性化的。如此一来,梯度上升的方向就是最佳方向,也就是使目标函数损失值最大的方向。
  • BIM的使用,基于作者表示,如果模型不是高度线性的怎么办?作者从这个想法出发,表示FGSM直接以epslion的步调大小梯度上升,并不是最好方案。在(0,epslion)范围内,一定存在更好的步调。
  • 如果说FGSM一次梯度上升,改变像素点16个大小,那BIM就分十次梯度上升,每次改变像素点1.6个大小。作者表示,这样做总能找到较好的步调来梯度上升,最差也能和FGSM一样。

3 coding

  • 实践步骤:
  1. 训练一个简单模型(mnist手写数字分类任务)
  2. 通过该模型生成对抗样本
  3. 可视化展示对抗样本效果
3.1 训练模型
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm

# 加载mnist数据集
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, download=True, transform=transforms.Compose([
            transforms.ToTensor(),
            ])),
        batch_size=10, shuffle=True)
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([
            transforms.ToTensor(),
            ])),
        batch_size=10, shuffle=True)

# 超参数设置
batch_size = 10
epoch = 1
learning_rate = 0.001
# 设置扰动最大就是50
epsilon = 5/256
iter = 10
# 生成对抗样本的个数
adver_nums = 1000

# LeNet Model definition
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值