1 引言
- BIM,即基本迭代法,在FGSM基础上加上了迭代操作。想看FGSM,跳转
- 理解了FGSM,相信对BIM会丝毫没有压力。各位看官大多还是奔着代码去的吧,这里核心讲下代码。
- 使用pytorch实现BIM。pytorch不会?跳转
2 BIM原理
- FGSM公式

- BIM公式

- 如上,BIM与FGSM真就是一个for循环的区别。但为什么BIM也能发论文呢?BIM存在其数学理论的合理性以及实验效果表现良好。
- FGSM的使用,基于作者假设模型是高度线性化的。如此一来,梯度上升的方向就是最佳方向,也就是使目标函数损失值最大的方向。
- BIM的使用,基于作者表示,如果模型不是高度线性的怎么办?作者从这个想法出发,表示FGSM直接以epslion的步调大小梯度上升,并不是最好方案。在(0,epslion)范围内,一定存在更好的步调。
- 如果说FGSM一次梯度上升,改变像素点16个大小,那BIM就分十次梯度上升,每次改变像素点1.6个大小。作者表示,这样做总能找到较好的步调来梯度上升,最差也能和FGSM一样。
3 coding
- 训练一个简单模型(mnist手写数字分类任务)
- 通过该模型生成对抗样本
- 可视化展示对抗样本效果
3.1 训练模型
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, download=True, transform=transforms.Compose([
transforms.ToTensor(),
])),
batch_size=10, shuffle=True)
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([
transforms.ToTensor(),
])),
batch_size=10, shuffle=True)
batch_size = 10
epoch = 1
learning_rate = 0.001
epsilon = 5/256
iter = 10
adver_nums = 1000
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(