如何求极限?求极限方法有哪些?
ε-δ定义
函数极限定义的理解
级数和函数连续性
7种极限存在和21种极限不存在
托普利兹矩阵
黑林格-特普利茨定理
特普利茨(Toeplitz)定理的证明
斯托尔茨(O.Stolz)定理
不等式的秘密
Abel变换
Abel变换证明
1 、 ϵ − N , ϵ − δ 定义法 : 1、\epsilon-N,\epsilon -\delta定义法: 1、ϵ−N,ϵ−δ定义法:极限语言
数列的极限
ϵ
−
N
语言:
\color{black}{\textbf{数列的极限}}\epsilon-N语言:
数列的极限ϵ−N语言:
设
{
a
n
}
是一给定数列
,
a
为定数,
如果对于任意给定的
ε
>
0
,
总存在自然数
N
,
使得当
n
>
N
时,有
∣
a
n
−
a
∣
<
ε
;
则称数列
{
a
n
}
收敛于
a
,常数
a
称为数列
{
a
n
}
的极限
.
记为
lim
n
→
∞
a
n
=
a
,
或
a
n
→
a
(
n
→
∞
)
若数列
{
a
n
}
没有极限,则称
{
a
n
}
不收敛,或称
{
a
n
}
为发散数列
.
\\设\left \{{a_n} \right \}是一给定数列,a为定数 ,\\如果对于任意给定的\varepsilon>0,总存在自然数N,\\使得当n>N时,有\left|a_{n}-a\right|<\varepsilon;\\则称数列\left \{{a_n} \right \}收敛于a,常数a称为数列\left \{{a_n} \right \}的极限.\\记为\lim _{n \rightarrow \infty} a_{n}=a,或a_{n} \rightarrow \ a(n \rightarrow \infty)\\若数列\left \{{a_n} \right \}没有极限,则称\left \{{a_n} \right \}不收敛,或称\left \{{a_n} \right \}为发散数列.
设{an}是一给定数列,a为定数,如果对于任意给定的ε>0,总存在自然数N,使得当n>N时,有∣an−a∣<ε;则称数列{an}收敛于a,常数a称为数列{an}的极限.记为n→∞liman=a,或an→ a(n→∞)若数列{an}没有极限,则称{an}不收敛,或称{an}为发散数列.
逻辑符号表示
:
∀
ε
>
0
,
∃
N
∈
N
,
∀
n
>
N
;
∣
a
n
−
a
∣
<
ε
逻辑符号表示:\forall \varepsilon>0, \exists N \in \mathbb{N}, \forall n>N;\left|a_{n} - a\right|<\varepsilon
逻辑符号表示:∀ε>0,∃N∈N,∀n>N;∣an−a∣<ε
定理1
:
收敛数列的极限必是唯一的
\color{red}{\textbf{定理1}}:收敛数列的极限必是唯一的
定理1:收敛数列的极限必是唯一的
证明
:
假设
x
n
有极限
a
与
b
,根据极限的定义
∀
ε
>
0
∃
N
1
,
∀
n
>
N
1
:
∣
x
n
−
a
∣
<
ε
2
∃
N
2
,
∀
n
>
N
2
:
∣
x
n
−
b
∣
<
ε
2
取
N
=
max
{
N
1
,
N
2
}
,则当
n
>
N
时上述两不等式均成立,
于是由三角不等式有
∣
a
−
b
∣
=
∣
a
−
x
n
+
x
n
−
b
∣
⩽
∣
x
n
−
a
∣
+
∣
x
n
−
b
∣
<
ε
2
+
ε
2
=
ε
由
ε
的任意性知
a
=
b
.
证明:假设{x_n}有极限a与b,根据极限的定义\forall \varepsilon>0\\ \begin{array}{l} \exists N_{1}, \forall n>N_{1}:\left|x_{n}-a\right|<\frac{\varepsilon}{2} \\ \exists N_{2}, \forall n>N_{2}:\left|x_{n}-b\right|<\frac{\varepsilon}{2} \end{array}\\取N=\max \left\{N_{1}, N_{2}\right\},则当n>N时上述两不等式均成立,\\于是由三角不等式有\\\begin{aligned} |a-b| &=\left|a-x_{n}+x_{n}-b\right| \leqslant\left|x_{n}-a\right|+\left|x_{n}-b\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \end{aligned} \\由\varepsilon的任意性知a=b.
证明:假设xn有极限a与b,根据极限的定义∀ε>0∃N1,∀n>N1:∣xn−a∣<2ε∃N2,∀n>N2:∣xn−b∣<2ε取N=max{N1,N2},则当n>N时上述两不等式均成立,于是由三角不等式有∣a−b∣=∣a−xn+xn−b∣⩽∣xn−a∣+∣xn−b∣<2ε+2ε=ε由ε的任意性知a=b.
定理2
:
收敛数列必有界
\color{red}{\textbf{定理2}}:收敛数列必有界
定理2:收敛数列必有界
证明
:
设数列
a
n
收敛于
a
,
由极限的定义,
对
ε
=
1
,
∃
N
,
∀
n
>
N
:
∣
x
n
−
a
∣
<
1
,
即
a
−
1
<
x
n
<
a
+
1
取
M
=
max
{
x
1
,
x
2
,
⋯
,
x
N
,
a
+
1
}
,
m
=
min
{
x
1
,
x
2
,
⋯
,
x
N
,
a
−
1
}
,
则对
x
n
所有项都满足
m
⩽
x
n
⩽
M
.
因此
{
x
n
}
有界
.
注
:
该定理的逆命题不成立,即有界数列未必收敛
.
例如,
{
(
−
1
)
n
}
证明:设数列{a_n}收敛于a,由极限的定义,\\对\varepsilon=1, \exists N, \forall n>N:\left|x_{n}-a\right|<1,即a-1<x_n<a+1\\取M=\max \left\{x_{1}, x_{2}, \cdots, x_{N}, a+1\right\}, m=\min \left\{x_{1}, x_{2}, \cdots, x_{N}, a-1\right\},\\则对{x_n}所有项都满足m \leqslant x_{n} \leqslant M .因此\left\{x_{n}\right\} 有界. \\注:该定理的逆命题不成立,即有界数列未必收敛.例如,\left\{(-1)^{n}\right\}
证明:设数列an收敛于a,由极限的定义,对ε=1,∃N,∀n>N:∣xn−a∣<1,即a−1<xn<a+1取M=max{x1,x2,⋯,xN,a+1},m=min{x1,x2,⋯,xN,a−1},则对xn所有项都满足m⩽xn⩽M.因此{xn}有界.注:该定理的逆命题不成立,即有界数列未必收敛.例如,{(−1)n}
函数的极限
ϵ
−
δ
语言
:
\color{black}{\textbf{函数的极限}}\epsilon -\delta语言:
函数的极限ϵ−δ语言:
2
、两边夹法则【夹逼定理】
:
2、两边夹法则【夹逼定理】:
2、两边夹法则【夹逼定理】:
如果数列
{
X
n
}
,
{
Y
n
}
及
{
Z
n
}
满足下列条件:
(
1
)
当
n
>
N
0
时,其中
N
0
∈
N
∗
,有
Y
n
<
X
n
<
Z
n
;
(
2
)
{
Y
n
}
、
{
Z
n
}
有相同的极限,设
−
∞
<
a
<
∞
,
则数列
{
X
n
}
的极限存在,且当
n
→
+
∞
时,
lim
X
n
=
a
.
如果数列\left \{X _{n} \right \},\left \{Y _{n} \right \} 及\left \{Z _{n} \right \}满足下列条件:\\(1)当n> N_{0}时,其中N_{0}\in N^{*},有Y_{n}< X_{n}< Z_{n};\\(2)\left \{Y _{n} \right \}、\left \{Z _{n} \right \}有相同的极限,设-\infty< a< \infty,\\则数列\left \{X _{n} \right \}的极限存在,且当n\rightarrow +\infty时 ,\lim X_{n}=a .
如果数列{Xn},{Yn}及{Zn}满足下列条件:(1)当n>N0时,其中N0∈N∗,有Yn<Xn<Zn;(2){Yn}、{Zn}有相同的极限,设−∞<a<∞,则数列{Xn}的极限存在,且当n→+∞时,limXn=a.
T
h
:
设
a
n
,
b
n
,
c
n
满足
a
n
≤
b
n
≤
c
n
.
且
lim
n
→
+
∞
a
n
=
lim
n
→
+
∞
c
n
,
则
lim
n
→
+
∞
b
n
=
a
.
注:
1
∘
∃
N
,
s
t
.
n
>
N
,
a
n
≤
b
n
≤
c
n
;
2
∘
函数极限也成立。
Th: 设a_{n},b_{n},c_{n}满足a_{n}\leq b_{n}\leq c_{n}.且\lim_{n\rightarrow+\infty}a_{n}=\lim_{n\rightarrow+\infty}c_{n},\\则\lim_{n\rightarrow+\infty}b_{n}=a .\\注:1^\circ\exists N,st.n> N,a_{n}\leq b_{n}\leq c_{n};2^\circ函数极限也成立。
Th:设an,bn,cn满足an≤bn≤cn.且n→+∞liman=n→+∞limcn,则n→+∞limbn=a.注:1∘∃N,st.n>N,an≤bn≤cn;2∘函数极限也成立。
3
、洛毕达法则
:
3、 洛毕达法则:
3、洛毕达法则:
一定条件下通过分子分母分别求导,再求极限来确定未定式值的方法
1
∘
、
T
h
(
0
0
)
:
如果
f
(
x
)
,
g
(
x
)
满足
:
一定条件下通过分子分母分别求导,再求极限来确定未定式值的方法\\1^{\circ}、Th\left ( \frac{0}{0} \right ):如果f\left ( x \right ),g\left ( x \right )满足:
一定条件下通过分子分母分别求导,再求极限来确定未定式值的方法1∘、Th(00):如果f(x),g(x)满足:
1
)
lim
x
→
x
0
f
(
x
)
=
lim
x
→
x
0
g
(
x
)
=
0
,
2
)
f
(
x
)
,
g
(
x
)
在
U
∘
(
x
0
,
δ
)
∃
且可导,
g
(
x
)
′
≠
0
,
3
)
lim
x
→
x
0
f
(
x
)
′
g
(
x
)
′
=
A
,
}
⇒
lim
x
→
x
0
f
(
x
)
g
(
x
)
=
A
\begin{aligned} \left.\begin{aligned} 1)\lim_{x\rightarrow x_{0}}f\left ( x \right )=\lim_{x\rightarrow x_{0}}g\left ( x \right )=0,\\ 2)f\left ( x \right ),g\left ( x \right)在U^{\circ}\left (x _{0},\delta \right )\exists且可导,g\left ( x \right )^{'}\neq 0,\\ %加&指定对齐位置 3)\lim_{x\rightarrow x_{0}}\frac{f\left ( x \right )^{'}}{g\left ( x \right )^{'}}=A, \end{aligned} \right\}\Rightarrow\lim_{x\rightarrow x_{0}}\frac{f\left ( x \right )}{g\left ( x \right )}=A %加右} \qquad \end{aligned}
1)x→x0limf(x)=x→x0limg(x)=0,2)f(x),g(x)在U∘(x0,δ)∃且可导,g(x)′=0,3)x→x0limg(x)′f(x)′=A,⎭
⎬
⎫⇒x→x0limg(x)f(x)=A
2
∘
、
T
h
(
∞
∞
)
:
如果
f
(
x
)
,
g
(
x
)
满足
:
1
)
lim
x
→
x
0
f
(
x
)
=
lim
x
→
x
0
g
(
x
)
=
∞
;
2
)
f
(
x
)
,
g
(
x
)
在
U
∘
(
x
0
,
δ
)
∃
且可导,
g
(
x
)
′
≠
0
;
3
)
lim
x
→
x
0
f
(
x
)
′
g
(
x
)
′
=
A
;
}
⇒
lim
x
→
x
0
f
(
x
)
g
(
x
)
=
A
2^{\circ}、Th\left ( \frac{\infty}{\infty} \right ):如果f\left ( x \right ),g\left ( x \right )满足:\\\begin{aligned} \left.\begin{aligned} 1)\lim_{x\rightarrow x_{0}}f\left ( x \right )=\lim_{x\rightarrow x_{0}}g\left ( x \right )=\infty;\\ 2)f\left ( x \right ),g\left ( x \right)在U^{\circ}\left (x _{0},\delta \right )\exists且可导,g\left ( x \right )^{'}\neq 0;\\ %加&指定对齐位置 3)\lim_{x\rightarrow x_{0}}\frac{f\left ( x \right )^{'}}{g\left ( x \right )^{'}}=A; \end{aligned} \right\}\Rightarrow\lim_{x\rightarrow x_{0}}\frac{f\left ( x \right )}{g\left ( x \right )}=A %加右} \qquad \end{aligned}
2∘、Th(∞∞):如果f(x),g(x)满足:1)x→x0limf(x)=x→x0limg(x)=∞;2)f(x),g(x)在U∘(x0,δ)∃且可导,g(x)′=0;3)x→x0limg(x)′f(x)′=A;⎭
⎬
⎫⇒x→x0limg(x)f(x)=A
4
、递推关系
:
4、 递推关系:
4、递推关系:
1
)
x
n
+
1
=
f
(
x
n
)
,求
x
n
=
2
)
先证明
x
n
的极限存在性,再通过递推关系求极限值。
【单调有界定理、
C
a
u
c
h
y
收敛准则、压缩映像原理
(
不动点定理
)
】;
1)x_{n+1}=f\left ( x_{n} \right ),求 x_{n}=\\2)先证明x_{n}的极限存在性,再通过递推关系求极限值。\\【单调有界定理、Cauchy收敛准则、压缩映像原理(不动点定理)】;
1)xn+1=f(xn),求xn=2)先证明xn的极限存在性,再通过递推关系求极限值。【单调有界定理、Cauchy收敛准则、压缩映像原理(不动点定理)】;
压缩映像原理<不动点定理>
:
y
=
f
(
x
)
;
∃
x
0
,
s
t
.
f
(
x
0
)
=
x
0
.
设
k
∈
(
0
,
1
)
,对
∀
x
,
y
∈
R
,
∣
f
(
x
)
−
f
(
y
)
∣
≤
k
∣
x
−
y
∣
;
∀
x
0
∈
R
,构造数列
x
n
+
1
=
f
(
x
n
)
,
n
=
0
,
1
,
2
,
.
.
.
则
i
)
lim
n
→
∞
x
n
=
x
t
i
i
)
x
t
为
f
(
x
)
唯一的不动点
i
i
i
)
∣
x
n
−
x
t
∣
≤
k
n
1
−
k
∣
x
1
−
x
0
∣
\color{red}{\textbf{压缩映像原理<不动点定理>}}: \\\color{black} y=f\left ( x \right );\exists x_{0},st.f\left ( x_{0} \right )=x_{0}.\\设k\in\left ( 0,1 \right ),对\forall x,y\in R,\left |f\left ( x \right )-f\left ( y \right ) \right |\leq k\left | x-y \right |;\\ \forall x_{0}\in R,构造数列x_{n+1}=f\left ( x_{n} \right ),n=0,1,2,...则\\ i)\lim_{n\rightarrow \infty}x_{n}=x^{t}\\ ii)x^{t}为f\left ( x \right )唯一的不动点\\ iii)\left | x_{n}-x^{t} \right |\leq \frac{k^{n}}{1-k}\left | x_{1}-x_{0} \right |
压缩映像原理<不动点定理>:y=f(x);∃x0,st.f(x0)=x0.设k∈(0,1),对∀x,y∈R,∣f(x)−f(y)∣≤k∣x−y∣;∀x0∈R,构造数列xn+1=f(xn),n=0,1,2,...则i)limn→∞xn=xtii)xt为f(x)唯一的不动点iii)∣xn−xt∣≤1−kkn∣x1−x0∣
证明
:
i
)
:
∣
x
n
+
1
−
x
n
∣
=
∣
f
(
x
n
)
−
f
(
x
n
−
1
)
∣
≤
k
∣
x
n
−
x
n
−
1
∣
≤
.
.
.
≤
k
n
∣
x
1
−
x
0
∣
考虑
∣
x
n
+
p
−
x
n
∣
=
∣
x
n
+
p
−
x
n
+
p
−
1
+
x
n
+
p
−
1
−
x
n
+
p
−
2
+
.
.
.
+
x
n
+
1
−
x
n
∣
≤
∣
x
n
+
p
−
x
n
∣
+
.
.
.
∣
x
n
+
1
−
x
n
∣
≤
k
n
+
p
−
1
∣
x
1
−
x
0
∣
+
.
.
.
+
k
n
∣
x
1
−
x
0
∣
=
k
n
−
k
n
+
p
1
−
k
∣
x
1
−
x
0
∣
≤
k
n
1
−
k
∣
x
1
−
x
0
∣
→
0
∴
lim
n
→
∞
x
n
=
x
t
{\textbf{证明}}:\\ i):\left | x_{n+1} - x_{n} \right |=\left |f\left ( x_{n} \right )-f\left ( x_{n-1} \right ) \right |\leq k\left | x_{n} - x_{n-1} \right |\leq ...\leq k^{n}\left | x_{1} - x_{0} \right |\\ 考虑\left | x_{n+p} - x_{n} \right |=\left | x_{n+p} - x_{n+p-1} + x_{n+p-1} - x_{n+p-2} +...+ x_{n+1} - x_{n} \right |\\ \leq\left | x_{n+p} - x_{n} \right |+...\left | x_{n+1} - x_{n} \right |\\ \leq k^{n+p-1}\left | x_{1} - x_{0} \right |+...+k^{n}\left | x_{1} - x_{0} \right |\\ =\frac{k^{n}-k^{n+p}}{1-k}\left | x_{1}-x_{0} \right |\leq \frac{k^{n}}{1-k}\left | x_{1}-x_{0} \right |\rightarrow0\\ \therefore \lim_{n\rightarrow \infty}x_{n}=x^{t}
证明:i):∣xn+1−xn∣=∣f(xn)−f(xn−1)∣≤k∣xn−xn−1∣≤...≤kn∣x1−x0∣考虑∣xn+p−xn∣=∣xn+p−xn+p−1+xn+p−1−xn+p−2+...+xn+1−xn∣≤∣xn+p−xn∣+...∣xn+1−xn∣≤kn+p−1∣x1−x0∣+...+kn∣x1−x0∣=1−kkn−kn+p∣x1−x0∣≤1−kkn∣x1−x0∣→0∴n→∞limxn=xt
i
i
)
:
x
n
+
1
=
f
(
x
n
)
,
令
n
→
∞
,
x
t
=
f
(
x
t
)
唯一性:若
∃
y
t
,
s
t
.
f
(
y
t
)
=
y
t
;
∣
f
(
x
t
)
−
f
(
y
t
)
∣
≤
k
∣
x
t
−
y
t
∣
∴
∣
x
t
−
y
t
∣
≤
k
∣
x
t
−
y
t
∣
⇒
(
1
−
k
)
(
x
t
−
y
t
)
≤
0
又
∵
k
∈
(
0
,
1
)
∴
x
t
=
y
t
ii):x_{n+1}=f\left ( x_{n} \right ),令n\rightarrow\infty,x^{t}=f\left ( x^{t} \right )\\ 唯一性:若\exists y^{t},st.f\left ( y^{t} \right )=y^{t};\\ \left |f\left (x^{t} \right )-f\left ( y^{t} \right ) \right |\leq k\left | x^{t}-y^{t} \right |\\ \therefore \left | x^{t}-y^{t} \right |\leq k\left | x^{t}-y^{t} \right |\Rightarrow\left ( 1-k \right )\left ( x^{t}-y^{t} \right )\leq 0\\ 又\because k\in \left ( 0,1 \right )\therefore x^{t}=y^{t}
ii):xn+1=f(xn),令n→∞,xt=f(xt)唯一性:若∃yt,st.f(yt)=yt;
f(xt)−f(yt)
≤k
xt−yt
∴
xt−yt
≤k
xt−yt
⇒(1−k)(xt−yt)≤0又∵k∈(0,1)∴xt=yt
i
i
i
)
:
∣
x
n
+
p
−
x
n
∣
≤
k
n
1
−
k
∣
x
1
−
x
0
∣
,
令
p
→
∞
,
则
∣
x
t
−
x
n
∣
≤
k
n
1
−
k
∣
x
1
−
x
0
∣
iii):\left | x_{n+p} - x_{n} \right |\leq \frac{k^{n}}{1-k}\left | x_{1}-x_{0} \right |,令p\rightarrow \infty,则\left | x^{t}-x_{n} \right |\leq \frac{k^{n}}{1-k}\left | x_{1}-x_{0} \right |\\
iii):∣xn+p−xn∣≤1−kkn∣x1−x0∣,令p→∞,则
xt−xn
≤1−kkn∣x1−x0∣
注:
∣
f
(
x
)
−
f
(
y
)
∣
≤
k
∣
x
−
y
∣
“
L
i
p
s
c
h
i
t
z
条件”;
∣
f
(
x
)
−
f
(
y
)
∣
≤
k
∣
x
−
y
∣
⇒
f
(
x
)
∈
C
(
R
)
<
连续
>
;
C
a
u
c
h
y
收敛准则
注:\left |f\left ( x \right )-f\left ( y \right ) \right |\leq k\left | x-y \right |“Lipschitz条件”;\\ \left |f\left ( x \right )-f\left ( y \right ) \right |\leq k\left | x-y \right |\Rightarrow f\left ( x \right )\in C\left ( R \right )<连续>;\\ Cauchy收敛准则\\
注:∣f(x)−f(y)∣≤k∣x−y∣“Lipschitz条件”;∣f(x)−f(y)∣≤k∣x−y∣⇒f(x)∈C(R)<连续>;Cauchy收敛准则
5
、运用重要极限;根据常用极限进行推导
:
5、运用重要极限;根据常用极限进行推导:
5、运用重要极限;根据常用极限进行推导:
1
)
lim
x
→
0
s
i
n
x
x
=
1
、
lim
x
→
f
(
x
)
s
i
n
f
(
x
)
f
(
x
)
=
1
2
)
lim
x
→
0
(
1
+
x
)
1
x
=
e
(
lim
f
(
x
)
→
0
(
1
+
f
(
x
)
)
1
f
(
x
)
=
e
)
lim
x
→
∞
(
1
+
1
x
)
x
=
e
(
lim
f
(
x
)
→
∞
(
1
+
1
f
(
x
)
)
f
(
x
)
=
e
)
3
)
lim
x
→
0
l
n
(
1
+
x
)
x
=
1
4
)
lim
x
→
0
a
x
−
1
x
=
l
n
a
5
)
lim
x
→
0
(
1
+
x
)
u
−
1
x
=
u
a
n
−
b
n
=
(
a
−
b
)
(
a
n
−
1
b
0
+
a
n
−
2
b
1
+
.
.
.
+
a
0
b
n
−
1
)
1) \lim_{x\rightarrow 0}\frac{sinx}{x}=1、\lim_{x\rightarrow f\left ( x \right )}\frac{sinf\left ( x \right )}{f\left ( x \right )}=1\\2) \lim_{x\rightarrow 0}\left ( 1+x \right )^{\frac{1}{x}}=e\left ( \lim_{f\left ( x \right )\rightarrow 0}\left ( 1+f\left ( x \right ) \right )^{\frac{1}{f\left ( x \right )}}=e \right )\\ \lim_{x\rightarrow \infty}\left ( 1+\frac{1}{x} \right )^{x}=e\left ( \lim_{f\left ( x \right )\rightarrow \infty}\left ( 1+\frac{1}{f\left ( x \right )} \right )^{f\left ( x \right )}=e \right )\\3) \lim_{x\rightarrow 0}\frac{ln\left ( 1+x \right )}{x}=1\\4)\lim_{x\rightarrow 0}\frac{a^{x}-1}{x}=lna\\5)\lim_{x\rightarrow 0}\frac{\left ( 1+x \right )^{u}-1}{x}=u\\a^{n}-b^{n}=\left ( a-b \right )\left ( a^{n-1}b^{0}+a^{n-2}b^{1}+...+a^{0}b^{n-1} \right )
1)x→0limxsinx=1、x→f(x)limf(x)sinf(x)=12)x→0lim(1+x)x1=e(f(x)→0lim(1+f(x))f(x)1=e)x→∞lim(1+x1)x=e(f(x)→∞lim(1+f(x)1)f(x)=e)3)x→0limxln(1+x)=14)x→0limxax−1=lna5)x→0limx(1+x)u−1=uan−bn=(a−b)(an−1b0+an−2b1+...+a0bn−1)
6
、泰勒展开式求极限
:
6、泰勒展开式求极限:
6、泰勒展开式求极限:
泰勒公式是将在
x
=
x
0
处具有
n
阶导数的函数
f
(
x
)
,
利用关于
(
x
−
x
0
)
的
n
次多项式来逼近函数的方法;
泰勒公式是将在x=x _{0}处具有n阶导数的函数f\left (x\right ),\\利用关于(x-x _{0})的n次多项式来逼近函数的方法;
泰勒公式是将在x=x0处具有n阶导数的函数f(x),利用关于(x−x0)的n次多项式来逼近函数的方法;
1
)
T
h
:
若
f
(
x
)
在
[
a
,
b
]
内
∃
n
阶连续导数
,
∀
x
0
∈
[
a
,
b
]
有,
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
.
.
.
+
f
n
(
x
0
)
n
!
(
x
−
x
0
)
n
+
o
(
(
x
−
x
0
)
n
)
→
p
e
a
n
a
余项
,
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
.
.
.
+
f
n
(
x
0
)
n
!
(
x
−
x
0
)
n
+
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
L
a
g
r
a
n
g
e
余项
→
对逼近误差,计算
/
估计
;
ξ
=
x
0
+
θ
(
x
−
x
0
)
,
θ
∈
(
0
,
1
)
逼近理论:
f
(
x
)
=
T
n
(
x
)
+
R
n
(
x
)
1)Th:若f\left ( x \right )在\left [ a,b \right ]内\exists n阶连续导数,\\ \forall x_{0}\in \left [ a,b \right ]有,f\left ( x \right )=f\left ( x_{0} \right )+f^{'}\left ( x_{0} \right )\left ( x-x_{0} \right )+...+\frac{f^{n}\left ( x_{0} \right )}{n!}\left ( x-x_{0} \right )^{n}+\underset{\rightarrow peana余项}{o\left ( \left ( x-x_{0} \right )^{n} \right )},\\ f\left ( x \right )=f\left ( x_{0} \right )+f^{'}\left ( x_{0} \right )\left ( x-x_{0} \right )+...+\frac{f^{n}\left ( x_{0} \right )}{n!}\left ( x-x_{0} \right )^{n}+\underset{ Lagrange余项\rightarrow对逼近误差,计算/估计}{\frac{f^{\left ( n+1 \right )}\left ( \xi \right )}{\left ( n+1 \right )!}\left ( x-x_{0} \right )^{n+1}};\xi =x_{0}+\theta \left ( x-x_{0} \right ),\theta \in\left ( 0,1 \right )\\ 逼近理论:f\left ( x \right )=T_{n}\left ( x \right )+R_{n}\left ( x \right )
1)Th:若f(x)在[a,b]内∃n阶连续导数,∀x0∈[a,b]有,f(x)=f(x0)+f′(x0)(x−x0)+...+n!fn(x0)(x−x0)n+→peana余项o((x−x0)n),f(x)=f(x0)+f′(x0)(x−x0)+...+n!fn(x0)(x−x0)n+Lagrange余项→对逼近误差,计算/估计(n+1)!f(n+1)(ξ)(x−x0)n+1;ξ=x0+θ(x−x0),θ∈(0,1)逼近理论:f(x)=Tn(x)+Rn(x)
2
)
M
a
c
l
a
u
l
i
n
公式:
f
(
0
)
=
f
(
0
)
+
f
′
(
0
)
x
+
.
.
.
+
f
n
(
0
)
n
!
x
n
+
o
(
x
n
)
→
p
e
a
n
a
余项
3
)
e
x
=
1
+
x
+
x
2
2
!
+
.
.
.
+
x
n
n
!
+
o
(
x
n
)
s
i
n
x
=
x
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
⋯
+
(
−
1
)
n
−
1
x
2
n
−
1
(
2
n
−
1
)
!
+
o
(
x
2
n
−
1
)
,
−
∞
<
x
<
∞
c
o
s
x
=
1
−
x
2
2
!
+
x
4
4
!
−
x
6
6
!
+
⋯
+
(
−
1
)
n
x
2
n
(
2
n
)
!
+
o
(
x
2
n
)
,
−
∞
<
x
<
∞
l
n
(
1
+
x
)
=
x
−
x
2
2
+
x
3
3
−
x
4
4
+
⋯
+
(
−
1
)
n
−
1
x
n
n
+
o
(
x
n
)
,
−
1
<
x
<
∞
(
1
+
x
)
α
=
1
+
c
α
1
x
+
c
α
2
x
2
+
⋯
+
c
α
n
x
n
+
o
(
x
n
)
,
⟨
α
=
n
时,二项式定理:
c
α
n
=
α
⋅
(
α
−
1
)
⋅
.
.
.
⋅
(
α
−
n
+
1
)
n
!
⟩
2)Maclaulin公式:f\left ( 0 \right )=f\left ( 0 \right )+f^{'}\left ( 0 \right )x+...+\frac{f^{n}\left ( 0 \right )}{n!}x^{n}+\underset{\rightarrow peana余项}{o\left ( x^{n} \right )}\\ 3)e^{x}=1+x+\frac{x^{2}}{2!}+...+\frac{x^{n}}{n!}+o\left ( x^{n} \right )\\sinx=x- \frac { x^ { 3 } } { 3 ! } + \frac { x ^ { 5 } } {5 ! } - \frac { x ^ { 7 } } { 7 ! } + \cdots + (-1)^{n-1}\frac { x ^ { 2n-1 } } {(2n-1) ! }+o\left ( x^{2n-1} \right ) , \quad - \infty < x < \infty\\cosx=1- \frac { x^ { 2 } } { 2 ! } + \frac { x ^ { 4 } } {4 ! } - \frac { x ^ { 6 } } { 6 ! } + \cdots + (-1)^{n}\frac { x ^ { 2n } } {(2n) ! }+o\left ( x^{2n} \right ) , \quad - \infty < x < \infty\\ln(1+x)=x- \frac { x^ { 2 } } { 2 } + \frac { x ^ { 3 } } {3 } - \frac { x ^ { 4 } } { 4 } + \cdots + (-1)^{n-1}\frac { x ^ { n } } {n }+o\left ( x^{n} \right ) , \quad -1 < x < \infty\\(1+x)^{\alpha}=1+c_\alpha^1x+ c_\alpha^2x^ { 2 } + \cdots + c_\alpha^n x ^ { n }+o\left ( x^{n} \right ) , \langle\alpha=n时,二项式定理:c_\alpha^n=\frac{\alpha\cdot(\alpha-1)\cdot...\cdot(\alpha-n+1)}{n!}\rangle
2)Maclaulin公式:f(0)=f(0)+f′(0)x+...+n!fn(0)xn+→peana余项o(xn)3)ex=1+x+2!x2+...+n!xn+o(xn)sinx=x−3!x3+5!x5−7!x7+⋯+(−1)n−1(2n−1)!x2n−1+o(x2n−1),−∞<x<∞cosx=1−2!x2+4!x4−6!x6+⋯+(−1)n(2n)!x2n+o(x2n),−∞<x<∞ln(1+x)=x−2x2+3x3−4x4+⋯+(−1)n−1nxn+o(xn),−1<x<∞(1+x)α=1+cα1x+cα2x2+⋯+cαnxn+o(xn),⟨α=n时,二项式定理:cαn=n!α⋅(α−1)⋅...⋅(α−n+1)⟩
7
、积分中值定理
:
7、积分中值定理:
7、积分中值定理:
积分第一中值定理
:
若函数
f
(
x
)
在闭区间
[
a
,
b
]
上连续,
则在积分区间
[
a
,
b
]
上至少存在一个点
ε
,使得
∫
a
b
f
(
x
)
d
x
=
f
(
ε
)
(
b
−
a
)
,
a
≤
ε
≤
b
积分第一中值定理:若函数f\left(x\right)在闭区间\left[a,b\right]上连续,\\则在积分区间\left[a,b\right]上至少存在一个点\varepsilon,使得\\\int_{a}^{b}f\left(x\right)dx=f\left(\varepsilon\right)\left(b-a\right)\ ,\ a\le\varepsilon\le b
积分第一中值定理:若函数f(x)在闭区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ε,使得∫abf(x)dx=f(ε)(b−a) , a≤ε≤b
证明
证明
证明
设
f
(
x
)
在
[
a
,
b
]
上连续,因为闭区间上连续函数必有最大最小值,
不妨设最大值为
M
,最小值为
m
,最大值和最小值可相等。
对
m
≤
f
(
x
)
≤
M
两边同时积分可得:
m
(
b
−
a
)
≤
∫
a
b
f
(
x
)
d
x
≤
M
(
b
−
a
)
同除以
(
b
−
a
)
从而得到:
m
≤
1
b
−
a
∫
a
b
f
(
x
)
d
x
≤
M
由连续函数的介值定理可知,必定
∃
ε
∈
[
a
,
b
]
,
使得
f
(
ε
)
=
1
(
b
−
a
)
∫
a
b
f
(
x
)
d
x
,即:
∫
a
b
f
(
x
)
d
x
=
f
(
ε
)
(
b
−
a
)
,
∃
ε
∈
[
a
,
b
]
设f\left(x\right)在\left[a,b\right]上连续,因为闭区间上连续函数必有最大最小值,\\不妨设最大值为M,最小值为m,最大值和最小值可相等。\\对m\le f\left(x\right)\le M两边同时积分可得:\\m\left(b-a\right)\le\int_a^bf\left(x\right)dx\le M\left(b-a\right)\\同除以\left(b-a\right)从而得到:m\le\frac{1}{b-a}\int_a^bf\left(x\right)dx\le M\\由连续函数的介值定理可知,必定\exists\varepsilon\in[a,b],\\使得f\left(\varepsilon\right)=\frac{1}{(b-a)}\int_a^bf\left(x\right)dx,即:\int_a^bf\left(x\right)dx=f\left(\varepsilon\right)\left(b-a\right),\exists\varepsilon\in\left[a,b\right]
设f(x)在[a,b]上连续,因为闭区间上连续函数必有最大最小值,不妨设最大值为M,最小值为m,最大值和最小值可相等。对m≤f(x)≤M两边同时积分可得:m(b−a)≤∫abf(x)dx≤M(b−a)同除以(b−a)从而得到:m≤b−a1∫abf(x)dx≤M由连续函数的介值定理可知,必定∃ε∈[a,b],使得f(ε)=(b−a)1∫abf(x)dx,即:∫abf(x)dx=f(ε)(b−a),∃ε∈[a,b]
二重积分的中值定理
:
设
f
(
x
,
y
)
在有界闭区域
D
上连续,是
D
的面积,
则在
D
内至少存在一点,使得
:
∫
∫
D
f
(
x
,
y
)
d
σ
=
f
(
ε
,
μ
)
∙
σ
0
二重积分的中值定理:设f(x,y)在有界闭区域D上连续,是D的面积,\\则在D内至少存在一点,使得:\int_{ }^{ }\int_D^{ }f\left(x,y\right)d\sigma=f\left(\varepsilon,\mu\right)\bullet\sigma_0
二重积分的中值定理:设f(x,y)在有界闭区域D上连续,是D的面积,则在D内至少存在一点,使得:∫∫Df(x,y)dσ=f(ε,μ)∙σ0
积分第一中值推广定理
:
积分第一中值推广定理:
积分第一中值推广定理:
如果函数
f
(
x
)
、
g
(
x
)
在闭区间
[
a
,
b
]
上连续,
且
g
(
x
)
在
[
a
,
b
]
上不变号,
则在积分区间
[
a
,
b
]
上至少存在一个点
ε
,
使得:
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
f
(
ε
)
∫
a
b
g
(
x
)
d
x
如果函数f\left(x\right)、g\left(x\right)在闭区间\left[a,b\right]上连续,\\且g\left(x\right)在\left[a,b\right]上不变号,\\则在积分区间\left[a,b\right]上至少存在一个点\varepsilon,\\使得:\int_a^bf(x)g(x)dx=f(\varepsilon)\int_a^bg(x)dx
如果函数f(x)、g(x)在闭区间[a,b]上连续,且g(x)在[a,b]上不变号,则在积分区间[a,b]上至少存在一个点ε,使得:∫abf(x)g(x)dx=f(ε)∫abg(x)dx
积分第二中值定理
:
积分第二中值定理:
积分第二中值定理:
形式
形式
形式
设
f
(
x
)
在
[
a
,
b
]
上可积,考虑下列两种情况:
(
1
)
g
(
x
)
在
[
a
,
b
]
上单调递减且在
x
∈
[
a
,
b
]
时,
g
(
x
)
≥
0
,
那么存在ξ
∈
[
a
,
b
]
使得
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
g
(
a
)
∫
a
ξ
f
(
x
)
d
x
.
(
2
)
g
(
x
)
在
[
a
,
b
]
上单调递增且在
x
∈
[
a
,
b
]
时,
g
(
x
)
≥
0
,
那么存在ξ
∈
[
a
,
b
]
使得
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
g
(
b
)
∫
a
ξ
f
(
x
)
d
x
.
设f\left(x\right)在\left[a,b\right]上可积,考虑下列两种情况:\\(1)g(x)在\left[a,b\right]上单调递减且在x\in\left[a,b\right]时,g\left(x\right)\ge0,\\那么存在\text{ξ}\in\left[a,b\right]使得\int_a^bf\left(x\right)g\left(x\right)dx=g\left(a\right)\int_a^{\text{ξ}}f\left(x\right)dx.\\(2)g(x)在\left[a,b\right]上单调递增且在x\in\left[a,b\right]时,g\left(x\right)\ge0,\\那么存在\text{ξ}\in\left[a,b\right]使得\int_a^bf\left(x\right)g\left(x\right)dx=g\left(b\right)\int_a^{\text{ξ}}f\left(x\right)dx.
设f(x)在[a,b]上可积,考虑下列两种情况:(1)g(x)在[a,b]上单调递减且在x∈[a,b]时,g(x)≥0,那么存在ξ∈[a,b]使得∫abf(x)g(x)dx=g(a)∫aξf(x)dx.(2)g(x)在[a,b]上单调递增且在x∈[a,b]时,g(x)≥0,那么存在ξ∈[a,b]使得∫abf(x)g(x)dx=g(b)∫aξf(x)dx.
证明
证明
证明
(
1
)
设
F
(
x
)
=
∫
a
x
f
(
t
)
d
t
,
x
∈
[
a
,
b
]
.
F
(
x
)
是一个连续函数
,
故在
[
a
,
b
]
上有最小值
m
和最大值
M
设
g
(
a
)
=
0
由单调性知道
,
g
(
x
)
=
0.
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
∫
a
b
f
(
x
)
⋅
0
d
x
=
0
⋅
∫
a
b
f
(
x
)
d
x
=
g
(
a
)
∫
ξ
b
f
(
x
)
d
x
设
g
(
a
)
>
0.
因为
g
(
x
)
在
[
a
,
b
]
上是单调的
,
故可积
,
所以对任意
ε
>
0
,
L
>
0
,
存在分割
T
:
a
=
x
0
<
x
1
<
x
2
<
⋯
<
x
n
=
b
,
s
.
t
.
∑
i
=
0
n
−
1
ω
i
g
Δ
x
i
<
ε
L
,
其中
ω
i
g
为
g
(
x
)
在
[
x
i
,
x
i
+
!
]
上的振幅
.
因
f
(
x
)
在
[
a
,
b
]
上黎曼可积
,
故有界
,
记为
L
则
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
∑
i
=
0
n
∫
x
i
x
i
+
1
f
(
x
)
g
(
x
)
d
x
=
∑
i
=
0
n
−
1
∫
x
i
x
i
+
1
f
(
x
)
(
g
(
x
)
−
g
(
x
i
)
)
d
x
+
∑
i
=
0
n
−
1
∫
x
i
x
i
+
1
f
(
x
)
g
(
x
i
)
d
x
≤
∑
i
=
0
n
−
1
∫
x
i
x
i
+
1
∣
f
(
x
)
∣
∣
g
(
x
)
−
g
(
x
i
)
∣
d
x
+
∑
i
=
0
n
−
1
g
(
x
i
)
(
F
(
x
i
+
1
)
−
F
(
x
i
)
)
≤
L
∑
i
=
0
n
−
1
ω
i
g
Δ
x
i
+
∑
i
=
0
n
−
1
g
(
x
i
)
(
F
(
x
i
+
1
)
−
F
(
x
i
)
)
<
ε
+
∑
i
=
1
n
−
1
F
(
x
i
)
(
g
(
x
i
−
1
)
−
g
(
x
i
)
)
+
F
(
b
)
g
(
x
n
−
1
)
≤
M
∑
i
=
1
n
−
1
(
g
(
x
i
−
1
)
−
g
(
x
i
)
)
+
ε
+
F
(
b
)
g
(
x
n
−
1
)
=
M
g
(
a
)
+
ε
这里用到阿贝尔变换
∑
k
=
0
n
a
k
b
k
=
a
n
S
n
+
∑
k
=
0
n
−
1
S
k
(
a
k
−
a
k
+
1
)
,
同理有原式
≥
−
∑
i
=
0
n
−
1
∫
x
i
x
i
+
1
∣
f
(
x
)
∣
∣
g
(
x
)
−
g
(
x
i
)
∣
d
x
+
∑
i
=
0
n
−
1
g
(
x
i
)
(
F
(
x
i
+
1
)
−
F
(
x
i
)
)
≥
m
g
(
a
)
−
ε
由上述证明知道
m
g
(
a
)
−
ε
<
∫
a
b
f
(
x
)
g
(
x
)
d
x
<
M
g
(
a
)
+
ε
得
m
g
(
a
)
≤
∫
a
b
f
(
x
)
g
(
x
)
d
x
≤
M
g
(
a
)
,
从而
m
≤
∫
a
b
f
(
x
)
g
(
x
)
d
x
g
(
a
)
≤
M
所以
∃
ξ
∈
[
a
,
b
]
,
F
(
ξ
)
=
∫
b
a
f
(
x
)
g
(
x
)
d
x
g
(
a
)
从而
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
g
(
a
)
∫
a
ξ
f
(
x
)
d
x
(1)设F\left(x\right)=\int_a^xf\left(t\right)dt,x\in\left[a,b\right].F\left(x\right)是一个连续函数,\\故在\left[a,b\right]上有最小值m和最大值M\\设g\left(a\right)=0由单调性知道,g\left(x\right)=0.\\\int_a^bf\left(x\right)g\left(x\right)dx=\int_a^bf\left(x\right)·0dx=0·\int_a^bf\left(x\right)dx=g\left(a\right)\int_ξ^{\text{b}}f\left(x\right)dx\\设g\left(a\right)>0.因为g\left(x\right)在\left[a,b\right]上是单调的,故可积,\\所以对任意\varepsilon>0,L>0,\\存在分割T:a=x_0<x_1<x_2<\cdots<x_n=b,s.t.\sum_{i=0}^{n-1}\omega_i^g\Delta x_i<\frac{\varepsilon}{L},\\其中\omega_i^g为g\left(x\right)在[x_i,x_{i+!}]上的振幅.\\因f\left(x\right)在\left[a,b\right]上黎曼可积,故有界,记为L则\\\int_a^bf\left(x\right)g\left(x\right)dx=\sum_{i=0}^n\int_{x_i}^{x_{i+1}}f\left(x\right)g\left(x\right)dx\\=\sum_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}f\left(x\right)\left(g\left(x\right)-g\left(x_i\right)\right)dx+\sum_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}f\left(x\right)g\left(x_i\right)dx\\\le\sum_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}\left|f\left(x\right)\right|\left|g\left(x\right)-g\left(x_i\right)\right|dx+\sum_{i=0}^{n-1}g\left(x_i\right)\left(F\left(x_{i+1}\right)-F\left(x_i\right)\right)\\\le L\sum_{i=0}^{n-1}\omega_i^g\Delta x_i+\sum_{i=0}^{n-1}g\left(x_i\right)\left(F\left(x_{i+1}\right)-F\left(x_i\right)\right)\\<\varepsilon+\sum_{i=1}^{n-1}F\left(x_i\right)\left(g\left(x_{i-1}\right)-g\left(x_i\right)\right)+F\left(b\right)g\left(x_{n-1}\right)\\\le M\sum_{i=1}^{n-1}(g(x_{i-1})-g(x_i))+\varepsilon+F\left(b\right)g\left(x_{n-1}\right)\\=Mg\left(a\right)+\varepsilon\\这里用到阿贝尔变换\sum_{k=0}^na_kb_k=a_nS_n+\sum_{k=0}^{n-1}S_k\left(a_k-a_{k+1}\right),\\同理有原式\\\ge-\sum_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}\left|f\left(x\right)\right|\left|g\left(x\right)-g\left(x_i\right)\right|dx+\sum_{i=0}^{n-1}g\left(x_i\right)\left(F\left(x_{i+1}\right)-F\left(x_i\right)\right)\\\ge mg\left(a\right)-\varepsilon\\由上述证明知道mg\left(a\right)-\varepsilon<\int_a^bf\left(x\right)g\left(x\right)dx<Mg\left(a\right)+\varepsilon\\得mg\left(a\right)\le\int_a^bf\left(x\right)g\left(x\right)dx\le Mg\left(a\right),\\从而m\le\frac{\int_a^bf\left(x\right)g\left(x\right)dx}{g\left(a\right)}\le M\\所以\exists\text{ξ}\in\left[a,b\right],F\left(\text{ξ}\right)=\frac{\int_b^af(x)g(x)dx}{g(a)}\\从而\int_a^bf\left(x\right)g\left(x\right)dx=g\left(a\right)\int_a^{\text{ξ}}f\left(x\right)dx
(1)设F(x)=∫axf(t)dt,x∈[a,b].F(x)是一个连续函数,故在[a,b]上有最小值m和最大值M设g(a)=0由单调性知道,g(x)=0.∫abf(x)g(x)dx=∫abf(x)⋅0dx=0⋅∫abf(x)dx=g(a)∫ξbf(x)dx设g(a)>0.因为g(x)在[a,b]上是单调的,故可积,所以对任意ε>0,L>0,存在分割T:a=x0<x1<x2<⋯<xn=b,s.t.i=0∑n−1ωigΔxi<Lε,其中ωig为g(x)在[xi,xi+!]上的振幅.因f(x)在[a,b]上黎曼可积,故有界,记为L则∫abf(x)g(x)dx=i=0∑n∫xixi+1f(x)g(x)dx=i=0∑n−1∫xixi+1f(x)(g(x)−g(xi))dx+i=0∑n−1∫xixi+1f(x)g(xi)dx≤i=0∑n−1∫xixi+1∣f(x)∣∣g(x)−g(xi)∣dx+i=0∑n−1g(xi)(F(xi+1)−F(xi))≤Li=0∑n−1ωigΔxi+i=0∑n−1g(xi)(F(xi+1)−F(xi))<ε+i=1∑n−1F(xi)(g(xi−1)−g(xi))+F(b)g(xn−1)≤Mi=1∑n−1(g(xi−1)−g(xi))+ε+F(b)g(xn−1)=Mg(a)+ε这里用到阿贝尔变换k=0∑nakbk=anSn+k=0∑n−1Sk(ak−ak+1),同理有原式≥−i=0∑n−1∫xixi+1∣f(x)∣∣g(x)−g(xi)∣dx+i=0∑n−1g(xi)(F(xi+1)−F(xi))≥mg(a)−ε由上述证明知道mg(a)−ε<∫abf(x)g(x)dx<Mg(a)+ε得mg(a)≤∫abf(x)g(x)dx≤Mg(a),从而m≤g(a)∫abf(x)g(x)dx≤M所以∃ξ∈[a,b],F(ξ)=g(a)∫baf(x)g(x)dx从而∫abf(x)g(x)dx=g(a)∫aξf(x)dx
积分第二中值推广定理
:
积分第二中值推广定理:
积分第二中值推广定理:
一、如果函数
f
(
x
)
、
g
(
x
)
,
在闭区间
[
a
,
b
]
上可积,
且
f
(
x
)
为单调函数,则在积分区间
[
a
,
b
]
上至少存在一个点
ε
,使得:
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
f
(
a
)
∫
a
ε
g
(
x
)
d
x
+
f
(
b
)
∫
ε
b
g
(
x
)
d
x
二、如果函数
f
(
x
)
、
g
(
x
)
,
在闭区间
[
a
,
b
]
上可积,
f
(
x
)
≥
0
且为单调递减函数,则在积分区间
[
a
,
b
]
上至少存在一个点
ε
,
使得:
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
f
(
a
)
∫
a
ε
g
(
x
)
d
x
三、如果函数
f
(
x
)
、
g
(
x
)
,
在闭区间
[
a
,
b
]
上可积,
f
(
x
)
≥
0
且为单调递增函数,则在积分区间
[
a
,
b
]
上至少存在一个点
ε
,
使得:
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
f
(
b
)
∫
a
ε
g
(
x
)
d
x
一、如果函数f\left(x\right)、g\left(x\right),在闭区间\left[a,b\right]上可积,\\且f\left(x\right)为单调函数,则在积分区间\left[a,b\right]上至少存在一个点\varepsilon,使得:\\\int_a^bf\left(x\right)g\left(x\right)dx=f\left(a\right)\int_a^{\varepsilon}g\left(x\right)dx+f\left(b\right)\int_{\varepsilon}^bg\left(x\right)dx\\二、如果函数f\left(x\right)、g\left(x\right),在闭区间\left[a,b\right]上可积,\\f\left(x\right)\ge0且为单调递减函数,则在积分区间\left[a,b\right]上至少存在一个点\varepsilon,\\使得:\int_a^bf\left(x\right)g\left(x\right)dx=f\left(a\right)\int_a^{\varepsilon}g\left(x\right)dx\\三、如果函数f\left(x\right)、g\left(x\right),在闭区间\left[a,b\right]上可积,\\f\left(x\right)\ge0且为单调递增函数,则在积分区间\left[a,b\right]上至少存在一个点\varepsilon,\\使得:\int_a^bf\left(x\right)g\left(x\right)dx=f\left(b\right)\int_a^{\varepsilon}g\left(x\right)dx
一、如果函数f(x)、g(x),在闭区间[a,b]上可积,且f(x)为单调函数,则在积分区间[a,b]上至少存在一个点ε,使得:∫abf(x)g(x)dx=f(a)∫aεg(x)dx+f(b)∫εbg(x)dx二、如果函数f(x)、g(x),在闭区间[a,b]上可积,f(x)≥0且为单调递减函数,则在积分区间[a,b]上至少存在一个点ε,使得:∫abf(x)g(x)dx=f(a)∫aεg(x)dx三、如果函数f(x)、g(x),在闭区间[a,b]上可积,f(x)≥0且为单调递增函数,则在积分区间[a,b]上至少存在一个点ε,使得:∫abf(x)g(x)dx=f(b)∫aεg(x)dx
8
、
s
t
o
l
z
定理
:
8、stolz定理:
8、stolz定理:
S
t
o
l
z
定理处理数列不定式极限,一般用于
∗
/
∞
型的极限
(
即分母趋于正无穷大的分式极限,分子趋不趋于无穷大无所谓
)
、
0
/
0
型极限
(
此时要求分子分母都以
0
为极限
)
Stolz定理处理数列不定式极限,一般用于*/∞型的极限\\(即分母趋于正无穷大的分式极限,分子趋不趋于无穷大无所谓)、\\0/0型极限(此时要求分子分母都以0为极限)
Stolz定理处理数列不定式极限,一般用于∗/∞型的极限(即分母趋于正无穷大的分式极限,分子趋不趋于无穷大无所谓)、0/0型极限(此时要求分子分母都以0为极限)
1
∘
、
T
h
(
0
0
)
:如果
a
n
,
b
n
满足
:
1
)
a
n
→
0
,
(
n
→
∞
)
,
2
)
b
n
↓
→
0
,
3
)
lim
n
→
∞
a
n
+
1
−
a
n
b
n
+
1
−
b
n
=
L
,
}
⇒
lim
n
→
∞
a
n
b
n
=
L
1^{\circ}、Th\left ( \frac{0}{0} \right ):如果a_{n},b_{n}满足:\\ \begin{aligned} \left.\begin{aligned} 1)a_{n}\rightarrow0,(n\rightarrow\infty),\\ 2)b_{n}\downarrow\rightarrow0,\\ %加&指定对齐位置 3)\lim_{n\rightarrow \infty}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L, \end{aligned} \right\}\Rightarrow\lim_{n\rightarrow \infty}\frac{a_{n}}{b_{n}}=L %加右} \qquad \end{aligned}
1∘、Th(00):如果an,bn满足:1)an→0,(n→∞),2)bn↓→0,3)n→∞limbn+1−bnan+1−an=L,⎭
⎬
⎫⇒n→∞limbnan=L
2
∘
、
T
h
(
∞
∞
)
:
如果
a
n
,
b
n
满足
:
1
)
b
n
↑
严
→
∞
,
2
)
lim
n
→
∞
a
n
+
1
−
a
n
b
n
+
1
−
b
n
=
L
,
}
⇒
lim
n
→
∞
a
n
b
n
=
L
2^{\circ}、Th\left ( \frac{\infty}{\infty} \right ):如果a_{n},b_{n}满足:\\ \begin{aligned} \left.\begin{aligned} 1)b_{n}\uparrow严\rightarrow\infty,\\ %加&指定对齐位置 2)\lim_{n\rightarrow \infty}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L, \end{aligned} \right\}\Rightarrow\lim_{n\rightarrow \infty}\frac{a_{n}}{b_{n}}=L %加右} \qquad \end{aligned}
2∘、Th(∞∞):如果an,bn满足:1)bn↑严→∞,2)n→∞limbn+1−bnan+1−an=L,⎭
⎬
⎫⇒n→∞limbnan=L
3
∘
、推广:若
lim
n
→
∞
a
n
+
1
−
a
n
=
L
,则
lim
n
→
∞
a
n
n
=
L
3^{\circ}、推广:若\lim_{n\rightarrow \infty}{a_{n+1}-a_{n}}=L,则\lim_{n\rightarrow \infty}\frac{a_{n}}{n}=L
3∘、推广:若n→∞liman+1−an=L,则n→∞limnan=L
证明:令
b
n
=
n
,
b
n
↑
严
→
∞
,
由
S
t
o
l
z
.
T
h
知,
lim
n
→
∞
a
n
n
=
lim
n
→
∞
a
n
+
1
−
a
n
n
+
1
−
n
=
lim
n
→
∞
a
n
+
1
−
a
n
=
L
证明:令b_{n}=n,b_{n}\uparrow严\rightarrow\infty,\\由Stolz.Th知,\lim_{n\rightarrow \infty}\frac{a_{n}}{n}=\lim_{n\rightarrow \infty}\frac{a_{n+1}-a_{n}}{n+1-n}=\lim_{n\rightarrow \infty}{a_{n+1}-a_{n}}=L
证明:令bn=n,bn↑严→∞,由Stolz.Th知,n→∞limnan=n→∞limn+1−nan+1−an=n→∞liman+1−an=L
9
、托普利兹变换
:
9、托普利兹变换:
9、托普利兹变换:
10
、阿贝尔变换
:
10、阿贝尔变换:
10、阿贝尔变换:
(
分部求和法
)
离散的微分
,
对
级数
的离散形式作求和
,
差分的符号是
Δ
,这里的差分指的是前向差分
,
定义为
Δ
(
a
n
b
n
)
=
a
n
+
1
b
n
+
1
−
a
n
b
n
=
a
n
+
1
b
n
+
1
−
a
n
+
1
b
n
+
a
n
+
1
b
n
−
a
n
b
n
=
a
n
+
1
(
b
n
+
1
−
b
n
)
+
b
n
(
a
n
+
1
−
a
n
)
=
a
n
+
1
Δ
b
n
+
b
n
Δ
a
n
(分部求和法)离散的微分,对{\textbf{级数}}的离散形式作求和,\\差分的符号是\Delta,这里的差分指的是前向差分,定义为\\\begin{aligned}\Delta(a_nb_n)&=a_{n+1}b_{n+1}-a_nb_n\\ &=a_{n+1}b_{n+1}-a_{n+1}b_n+a_{n+1}b_n-a_nb_n\\ &=a_{n+1}(b_{n+1}-b_n)+b_n(a_{n+1}-a_n)\\ &=a_{n+1}\Delta b_n+b_n\Delta a_n\end{aligned}
(分部求和法)离散的微分,对级数的离散形式作求和,差分的符号是Δ,这里的差分指的是前向差分,定义为Δ(anbn)=an+1bn+1−anbn=an+1bn+1−an+1bn+an+1bn−anbn=an+1(bn+1−bn)+bn(an+1−an)=an+1Δbn+bnΔan
记
Δ
(
a
k
b
k
)
=
a
k
+
1
Δ
b
k
+
b
k
Δ
a
k
记\Delta(a_kb_k)=a_{k+1}\Delta b_k+b_k\Delta a_k
记Δ(akbk)=ak+1Δbk+bkΔak
两边求和得到
两边求和得到
两边求和得到
∑
k
=
1
n
−
1
Δ
(
a
k
b
k
)
=
∑
k
=
1
n
−
1
a
k
+
1
Δ
(
b
k
)
+
∑
k
=
1
n
−
1
b
k
Δ
(
a
k
)
\sum_{k=1}^{n-1}\Delta(a_kb_k)=\sum_{k=1}^{n-1}a_{k+1}\Delta(b_k)+\sum_{k=1}^{n-1}b_k\Delta(a_k)
∑k=1n−1Δ(akbk)=∑k=1n−1ak+1Δ(bk)+∑k=1n−1bkΔ(ak)
a
n
b
n
−
a
1
b
1
=
∑
k
=
1
n
−
1
a
k
+
1
(
b
k
+
1
−
b
k
)
+
∑
k
=
1
n
−
1
b
k
(
a
k
+
1
−
a
k
)
a_nb_n-a_1b_1=\sum_{k=1}^{n-1}a_{k+1}(b_{k+1}-b_k)+\sum_{k=1}^{n-1}b_k(a_{k+1}-a_k)
anbn−a1b1=∑k=1n−1ak+1(bk+1−bk)+∑k=1n−1bk(ak+1−ak)
把
b
n
变为
B
n
,
(
B
k
=
∑
i
=
1
k
b
i
)代到上边的式子里
把b_n变为B_n,(B_{k}=\sum_{i=1}^{k}b_{i})代到上边的式子里
把bn变为Bn,(Bk=∑i=1kbi)代到上边的式子里
a
n
B
n
−
a
1
B
1
=
∑
k
=
1
n
−
1
a
k
+
1
(
B
k
+
1
−
B
k
)
+
∑
k
=
1
n
−
1
B
k
(
a
k
+
1
−
a
k
)
a
n
B
n
−
a
1
b
1
=
∑
k
=
1
n
−
1
a
k
+
1
b
k
+
1
+
∑
k
=
1
n
−
1
B
k
(
a
k
+
1
−
a
k
)
a
n
B
n
=
∑
k
=
1
n
a
k
b
k
+
∑
k
=
1
n
−
1
B
k
(
a
k
+
1
−
a
k
)
a
n
B
n
+
∑
k
=
1
n
−
1
B
k
(
a
k
−
a
k
+
1
)
=
∑
k
=
1
n
a
k
b
k
a_n B_n-a_1B_1=\sum_{k=1}^{n-1}a_{k+1}(B_{k+1}-B_k)+\sum_{k=1}^{n-1}B_k(a_{k+1}-a_k)\\ a_n B_n-a_1b_1=\sum_{k=1}^{n-1}a_{k+1}b_{k+1}+\sum_{k=1}^{n-1}B_k(a_{k+1}-a_k)\\ a_n B_n=\sum_{k=1}^{n}a_k b_k+\sum_{k=1}^{n-1}B_k(a_{k+1}-a_k)\\ a_n B_n+\sum_{k=1}^{n-1}B_k(a_k-a_{k+1})=\sum_{k=1}^{n}a_kb_k
anBn−a1B1=∑k=1n−1ak+1(Bk+1−Bk)+∑k=1n−1Bk(ak+1−ak)anBn−a1b1=∑k=1n−1ak+1bk+1+∑k=1n−1Bk(ak+1−ak)anBn=∑k=1nakbk+∑k=1n−1Bk(ak+1−ak)anBn+∑k=1n−1Bk(ak−ak+1)=∑k=1nakbk
(从 m 到 n 求和) a n + 1 b n + 1 − a m b m = ∑ k = m n a k + 1 ( b k + 1 − b k ) + ∑ k = m n b k ( a k + 1 − a k ) = ∑ k = m n a k ( b k + 1 − b k ) + ∑ k = m n b k + 1 ( a k + 1 − a k ) \color{red}(从m到n求和)\\a_{n+1}b_{n+1}-a_mb_m\\=\sum_{k=m}^n a_{k+1}(b_{k+1}-b_k)+\sum_{k=m}^n b_k(a_{k+1}-a_k)\\=\sum_{k=m}^n a_k(b_{k+1}-b_k)+\sum_{k=m}^n b_{k+1}(a_{k+1}-a_k) (从m到n求和)an+1bn+1−ambm=∑k=mnak+1(bk+1−bk)+∑k=mnbk(ak+1−ak)=∑k=mnak(bk+1−bk)+∑k=mnbk+1(ak+1−ak)
11
、化为定积分
:
11、化为定积分:
11、化为定积分:
12
、级数收敛
:
12、级数收敛:
12、级数收敛:
{
1
)
∑
a
n
收敛
⇒
a
n
→
0
2
)
a
n
收敛
⇔
∑
(
a
n
+
1
−
a
n
)
收敛
3
)
{
t
n
}
有界,若
∣
x
n
∣
满足
∣
x
n
+
1
−
x
n
∣
≤
t
n
+
1
−
t
n
,
则
x
n
收敛
\begin{cases}1) \sum a_{n}收敛\Rightarrow a_{n}\rightarrow 0\\2)a_{n}收敛 \Leftrightarrow \sum \left ( a_{n+1} -a_{n}\right )收敛\\3)\left \{t _{n} \right \}有界, 若\left | x_{n} \right |满足\left | x_{n+1}-x_{n} \right |\leq t_{n+1}-t_{n},则x_{n}收敛 \end{cases}\\
⎩
⎨
⎧1)∑an收敛⇒an→02)an收敛⇔∑(an+1−an)收敛3){tn}有界,若∣xn∣满足∣xn+1−xn∣≤tn+1−tn,则xn收敛
13
、上下极限
:
13、上下极限:
13、上下极限:
14
、傅里叶级数
:
14、傅里叶级数:
14、傅里叶级数:
15
、幂级数求和
:
15、幂级数求和:
15、幂级数求和:
16
、无穷乘积
:
16、无穷乘积:
16、无穷乘积: