极限方法总结

如何求极限?求极限方法有哪些?
ε-δ定义
函数极限定义的理解
级数和函数连续性
7种极限存在和21种极限不存在
托普利兹矩阵
黑林格-特普利茨定理
特普利茨(Toeplitz)定理的证明
斯托尔茨(O.Stolz)定理
不等式的秘密
Abel变换
Abel变换证明

1 、 ϵ − N , ϵ − δ 定义法 : 1、\epsilon-N,\epsilon -\delta定义法: 1ϵN,ϵδ定义法:极限语言

数列的极限 ϵ − N 语言: \color{black}{\textbf{数列的极限}}\epsilon-N语言: 数列的极限ϵN语言: 设 { a n } 是一给定数列 , a 为定数, 如果对于任意给定的 ε > 0 , 总存在自然数 N , 使得当 n > N 时,有 ∣ a n − a ∣ < ε ; 则称数列 { a n } 收敛于 a ,常数 a 称为数列 { a n } 的极限 . 记为 lim ⁡ n → ∞ a n = a , 或 a n →   a ( n → ∞ ) 若数列 { a n } 没有极限,则称 { a n } 不收敛,或称 { a n } 为发散数列 . \\设\left \{{a_n} \right \}是一给定数列,a为定数 ,\\如果对于任意给定的\varepsilon>0,总存在自然数N,\\使得当n>N时,有\left|a_{n}-a\right|<\varepsilon;\\则称数列\left \{{a_n} \right \}收敛于a,常数a称为数列\left \{{a_n} \right \}的极限.\\记为\lim _{n \rightarrow \infty} a_{n}=a,或a_{n} \rightarrow \ a(n \rightarrow \infty)\\若数列\left \{{a_n} \right \}没有极限,则称\left \{{a_n} \right \}不收敛,或称\left \{{a_n} \right \}为发散数列. {an}是一给定数列,a为定数,如果对于任意给定的ε>0,总存在自然数N使得当n>N时,有ana<ε;则称数列{an}收敛于a,常数a称为数列{an}的极限.记为nliman=a,an a(n)若数列{an}没有极限,则称{an}不收敛,或称{an}为发散数列. 逻辑符号表示 : ∀ ε > 0 , ∃ N ∈ N , ∀ n > N ; ∣ a n − a ∣ < ε 逻辑符号表示:\forall \varepsilon>0, \exists N \in \mathbb{N}, \forall n>N;\left|a_{n} - a\right|<\varepsilon 逻辑符号表示:ε>0,NN,n>N;ana<ε

定理1 : 收敛数列的极限必是唯一的 \color{red}{\textbf{定理1}}:收敛数列的极限必是唯一的 定理1:收敛数列的极限必是唯一的 证明 : 假设 x n 有极限 a 与 b ,根据极限的定义 ∀ ε > 0 ∃ N 1 , ∀ n > N 1 : ∣ x n − a ∣ < ε 2 ∃ N 2 , ∀ n > N 2 : ∣ x n − b ∣ < ε 2 取 N = max ⁡ { N 1 , N 2 } ,则当 n > N 时上述两不等式均成立, 于是由三角不等式有 ∣ a − b ∣ = ∣ a − x n + x n − b ∣ ⩽ ∣ x n − a ∣ + ∣ x n − b ∣ < ε 2 + ε 2 = ε 由 ε 的任意性知 a = b . 证明:假设{x_n}有极限a与b,根据极限的定义\forall \varepsilon>0\\ \begin{array}{l} \exists N_{1}, \forall n>N_{1}:\left|x_{n}-a\right|<\frac{\varepsilon}{2} \\ \exists N_{2}, \forall n>N_{2}:\left|x_{n}-b\right|<\frac{\varepsilon}{2} \end{array}\\取N=\max \left\{N_{1}, N_{2}\right\},则当n>N时上述两不等式均成立,\\于是由三角不等式有\\\begin{aligned} |a-b| &=\left|a-x_{n}+x_{n}-b\right| \leqslant\left|x_{n}-a\right|+\left|x_{n}-b\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \end{aligned} \\由\varepsilon的任意性知a=b. 证明:假设xn有极限ab,根据极限的定义ε>0N1,n>N1:xna<2εN2,n>N2:xnb<2εN=max{N1,N2},则当n>N时上述两不等式均成立,于是由三角不等式有ab=axn+xnbxna+xnb<2ε+2ε=εε的任意性知a=b. 定理2 : 收敛数列必有界 \color{red}{\textbf{定理2}}:收敛数列必有界 定理2:收敛数列必有界
证明 : 设数列 a n 收敛于 a , 由极限的定义, 对 ε = 1 , ∃ N , ∀ n > N : ∣ x n − a ∣ < 1 , 即 a − 1 < x n < a + 1 取 M = max ⁡ { x 1 , x 2 , ⋯   , x N , a + 1 } , m = min ⁡ { x 1 , x 2 , ⋯   , x N , a − 1 } , 则对 x n 所有项都满足 m ⩽ x n ⩽ M . 因此 { x n } 有界 . 注 : 该定理的逆命题不成立,即有界数列未必收敛 . 例如, { ( − 1 ) n } 证明:设数列{a_n}收敛于a,由极限的定义,\\对\varepsilon=1, \exists N, \forall n>N:\left|x_{n}-a\right|<1,即a-1<x_n<a+1\\取M=\max \left\{x_{1}, x_{2}, \cdots, x_{N}, a+1\right\}, m=\min \left\{x_{1}, x_{2}, \cdots, x_{N}, a-1\right\},\\则对{x_n}所有项都满足m \leqslant x_{n} \leqslant M .因此\left\{x_{n}\right\} 有界. \\注:该定理的逆命题不成立,即有界数列未必收敛.例如,\left\{(-1)^{n}\right\} 证明:设数列an收敛于a,由极限的定义,ε=1,N,n>N:xna<1,a1<xn<a+1M=max{x1,x2,,xN,a+1},m=min{x1,x2,,xN,a1}则对xn所有项都满足mxnM.因此{xn}有界.:该定理的逆命题不成立,即有界数列未必收敛.例如,{(1)n}
函数的极限 ϵ − δ 语言 : \color{black}{\textbf{函数的极限}}\epsilon -\delta语言: 函数的极限ϵδ语言:

2 、两边夹法则【夹逼定理】 : 2、两边夹法则【夹逼定理】: 2、两边夹法则【夹逼定理】:
如果数列 { X n } , { Y n } 及 { Z n } 满足下列条件: ( 1 ) 当 n > N 0 时,其中 N 0 ∈ N ∗ ,有 Y n < X n < Z n ; ( 2 ) { Y n } 、 { Z n } 有相同的极限,设 − ∞ < a < ∞ , 则数列 { X n } 的极限存在,且当 n → + ∞ 时, lim ⁡ X n = a . 如果数列\left \{X _{n} \right \},\left \{Y _{n} \right \} 及\left \{Z _{n} \right \}满足下列条件:\\(1)当n> N_{0}时,其中N_{0}\in N^{*},有Y_{n}< X_{n}< Z_{n};\\(2)\left \{Y _{n} \right \}、\left \{Z _{n} \right \}有相同的极限,设-\infty< a< \infty,\\则数列\left \{X _{n} \right \}的极限存在,且当n\rightarrow +\infty时 ,\lim X_{n}=a . 如果数列{Xn},{Yn}{Zn}满足下列条件:(1)n>N0时,其中N0N,有Yn<Xn<Zn(2){Yn}{Zn}有相同的极限,设<a<则数列{Xn}的极限存在,且当n+时,limXn=a. T h : 设 a n , b n , c n 满足 a n ≤ b n ≤ c n . 且 lim ⁡ n → + ∞ a n = lim ⁡ n → + ∞ c n , 则 lim ⁡ n → + ∞ b n = a . 注: 1 ∘ ∃ N , s t . n > N , a n ≤ b n ≤ c n ; 2 ∘ 函数极限也成立。 Th: 设a_{n},b_{n},c_{n}满足a_{n}\leq b_{n}\leq c_{n}.且\lim_{n\rightarrow+\infty}a_{n}=\lim_{n\rightarrow+\infty}c_{n},\\则\lim_{n\rightarrow+\infty}b_{n}=a .\\注:1^\circ\exists N,st.n> N,a_{n}\leq b_{n}\leq c_{n};2^\circ函数极限也成立。 Th:an,bn,cn满足anbncn.n+liman=n+limcnn+limbn=a.注:1N,st.n>N,anbncn2函数极限也成立。

3 、洛毕达法则 : 3、 洛毕达法则: 3、洛毕达法则:
一定条件下通过分子分母分别求导,再求极限来确定未定式值的方法 1 ∘ 、 T h ( 0 0 ) : 如果 f ( x ) , g ( x ) 满足 : 一定条件下通过分子分母分别求导,再求极限来确定未定式值的方法\\1^{\circ}、Th\left ( \frac{0}{0} \right ):如果f\left ( x \right ),g\left ( x \right )满足: 一定条件下通过分子分母分别求导,再求极限来确定未定式值的方法1Th(00):如果f(x),g(x)满足: 1 ) lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) = 0 , 2 ) f ( x ) , g ( x ) 在 U ∘ ( x 0 , δ ) ∃ 且可导, g ( x ) ′ ≠ 0 , 3 ) lim ⁡ x → x 0 f ( x ) ′ g ( x ) ′ = A , } ⇒ lim ⁡ x → x 0 f ( x ) g ( x ) = A \begin{aligned} \left.\begin{aligned} 1)\lim_{x\rightarrow x_{0}}f\left ( x \right )=\lim_{x\rightarrow x_{0}}g\left ( x \right )=0,\\ 2)f\left ( x \right ),g\left ( x \right)在U^{\circ}\left (x _{0},\delta \right )\exists且可导,g\left ( x \right )^{'}\neq 0,\\ %加&指定对齐位置 3)\lim_{x\rightarrow x_{0}}\frac{f\left ( x \right )^{'}}{g\left ( x \right )^{'}}=A, \end{aligned} \right\}\Rightarrow\lim_{x\rightarrow x_{0}}\frac{f\left ( x \right )}{g\left ( x \right )}=A %加右} \qquad \end{aligned} 1)xx0limf(x)=xx0limg(x)=0,2)f(x),g(x)U(x0,δ)且可导,g(x)=0,3)xx0limg(x)f(x)=A, xx0limg(x)f(x)=A 2 ∘ 、 T h ( ∞ ∞ ) : 如果 f ( x ) , g ( x ) 满足 : 1 ) lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) = ∞ ; 2 ) f ( x ) , g ( x ) 在 U ∘ ( x 0 , δ ) ∃ 且可导, g ( x ) ′ ≠ 0 ; 3 ) lim ⁡ x → x 0 f ( x ) ′ g ( x ) ′ = A ; } ⇒ lim ⁡ x → x 0 f ( x ) g ( x ) = A 2^{\circ}、Th\left ( \frac{\infty}{\infty} \right ):如果f\left ( x \right ),g\left ( x \right )满足:\\\begin{aligned} \left.\begin{aligned} 1)\lim_{x\rightarrow x_{0}}f\left ( x \right )=\lim_{x\rightarrow x_{0}}g\left ( x \right )=\infty;\\ 2)f\left ( x \right ),g\left ( x \right)在U^{\circ}\left (x _{0},\delta \right )\exists且可导,g\left ( x \right )^{'}\neq 0;\\ %加&指定对齐位置 3)\lim_{x\rightarrow x_{0}}\frac{f\left ( x \right )^{'}}{g\left ( x \right )^{'}}=A; \end{aligned} \right\}\Rightarrow\lim_{x\rightarrow x_{0}}\frac{f\left ( x \right )}{g\left ( x \right )}=A %加右} \qquad \end{aligned} 2Th():如果f(x),g(x)满足:1)xx0limf(x)=xx0limg(x)=;2)f(x),g(x)U(x0,δ)且可导,g(x)=0;3)xx0limg(x)f(x)=A; xx0limg(x)f(x)=A

4 、递推关系 : 4、 递推关系: 4、递推关系:
1 ) x n + 1 = f ( x n ) ,求 x n = 2 ) 先证明 x n 的极限存在性,再通过递推关系求极限值。 【单调有界定理、 C a u c h y 收敛准则、压缩映像原理 ( 不动点定理 ) 】; 1)x_{n+1}=f\left ( x_{n} \right ),求 x_{n}=\\2)先证明x_{n}的极限存在性,再通过递推关系求极限值。\\【单调有界定理、Cauchy收敛准则、压缩映像原理(不动点定理)】; 1)xn+1=f(xn),求xn=2)先证明xn的极限存在性,再通过递推关系求极限值。【单调有界定理、Cauchy收敛准则、压缩映像原理(不动点定理)】;
压缩映像原理<不动点定理> : y = f ( x ) ; ∃ x 0 , s t . f ( x 0 ) = x 0 . 设 k ∈ ( 0 , 1 ) ,对 ∀ x , y ∈ R , ∣ f ( x ) − f ( y ) ∣ ≤ k ∣ x − y ∣ ; ∀ x 0 ∈ R ,构造数列 x n + 1 = f ( x n ) , n = 0 , 1 , 2 , . . . 则 i ) lim ⁡ n → ∞ x n = x t i i ) x t 为 f ( x ) 唯一的不动点 i i i ) ∣ x n − x t ∣ ≤ k n 1 − k ∣ x 1 − x 0 ∣ \color{red}{\textbf{压缩映像原理<不动点定理>}}: \\\color{black} y=f\left ( x \right );\exists x_{0},st.f\left ( x_{0} \right )=x_{0}.\\设k\in\left ( 0,1 \right ),对\forall x,y\in R,\left |f\left ( x \right )-f\left ( y \right ) \right |\leq k\left | x-y \right |;\\ \forall x_{0}\in R,构造数列x_{n+1}=f\left ( x_{n} \right ),n=0,1,2,...则\\ i)\lim_{n\rightarrow \infty}x_{n}=x^{t}\\ ii)x^{t}为f\left ( x \right )唯一的不动点\\ iii)\left | x_{n}-x^{t} \right |\leq \frac{k^{n}}{1-k}\left | x_{1}-x_{0} \right | 压缩映像原理<不动点定理>:y=f(x)x0st.f(x0)=x0.k(0,1),对x,yRf(x)f(y)kxy;x0R,构造数列xn+1=f(xn)n=0,1,2,...i)limnxn=xtii)xtf(x)唯一的不动点iii)xnxt1kknx1x0
证明 : i ) : ∣ x n + 1 − x n ∣ = ∣ f ( x n ) − f ( x n − 1 ) ∣ ≤ k ∣ x n − x n − 1 ∣ ≤ . . . ≤ k n ∣ x 1 − x 0 ∣ 考虑 ∣ x n + p − x n ∣ = ∣ x n + p − x n + p − 1 + x n + p − 1 − x n + p − 2 + . . . + x n + 1 − x n ∣ ≤ ∣ x n + p − x n ∣ + . . . ∣ x n + 1 − x n ∣ ≤ k n + p − 1 ∣ x 1 − x 0 ∣ + . . . + k n ∣ x 1 − x 0 ∣ = k n − k n + p 1 − k ∣ x 1 − x 0 ∣ ≤ k n 1 − k ∣ x 1 − x 0 ∣ → 0 ∴ lim ⁡ n → ∞ x n = x t {\textbf{证明}}:\\ i):\left | x_{n+1} - x_{n} \right |=\left |f\left ( x_{n} \right )-f\left ( x_{n-1} \right ) \right |\leq k\left | x_{n} - x_{n-1} \right |\leq ...\leq k^{n}\left | x_{1} - x_{0} \right |\\ 考虑\left | x_{n+p} - x_{n} \right |=\left | x_{n+p} - x_{n+p-1} + x_{n+p-1} - x_{n+p-2} +...+ x_{n+1} - x_{n} \right |\\ \leq\left | x_{n+p} - x_{n} \right |+...\left | x_{n+1} - x_{n} \right |\\ \leq k^{n+p-1}\left | x_{1} - x_{0} \right |+...+k^{n}\left | x_{1} - x_{0} \right |\\ =\frac{k^{n}-k^{n+p}}{1-k}\left | x_{1}-x_{0} \right |\leq \frac{k^{n}}{1-k}\left | x_{1}-x_{0} \right |\rightarrow0\\ \therefore \lim_{n\rightarrow \infty}x_{n}=x^{t} 证明i):xn+1xn=f(xn)f(xn1)kxnxn1...knx1x0考虑xn+pxn=xn+pxn+p1+xn+p1xn+p2+...+xn+1xnxn+pxn+...xn+1xnkn+p1x1x0+...+knx1x0=1kknkn+px1x01kknx1x00nlimxn=xt i i ) : x n + 1 = f ( x n ) , 令 n → ∞ , x t = f ( x t ) 唯一性:若 ∃ y t , s t . f ( y t ) = y t ; ∣ f ( x t ) − f ( y t ) ∣ ≤ k ∣ x t − y t ∣ ∴ ∣ x t − y t ∣ ≤ k ∣ x t − y t ∣ ⇒ ( 1 − k ) ( x t − y t ) ≤ 0 又 ∵ k ∈ ( 0 , 1 ) ∴ x t = y t ii):x_{n+1}=f\left ( x_{n} \right ),令n\rightarrow\infty,x^{t}=f\left ( x^{t} \right )\\ 唯一性:若\exists y^{t},st.f\left ( y^{t} \right )=y^{t};\\ \left |f\left (x^{t} \right )-f\left ( y^{t} \right ) \right |\leq k\left | x^{t}-y^{t} \right |\\ \therefore \left | x^{t}-y^{t} \right |\leq k\left | x^{t}-y^{t} \right |\Rightarrow\left ( 1-k \right )\left ( x^{t}-y^{t} \right )\leq 0\\ 又\because k\in \left ( 0,1 \right )\therefore x^{t}=y^{t} ii):xn+1=f(xn),n,xt=f(xt)唯一性:若yt,st.f(yt)=yt; f(xt)f(yt) k xtyt xtyt k xtyt (1k)(xtyt)0k(0,1)xt=yt i i i ) : ∣ x n + p − x n ∣ ≤ k n 1 − k ∣ x 1 − x 0 ∣ , 令 p → ∞ , 则 ∣ x t − x n ∣ ≤ k n 1 − k ∣ x 1 − x 0 ∣ iii):\left | x_{n+p} - x_{n} \right |\leq \frac{k^{n}}{1-k}\left | x_{1}-x_{0} \right |,令p\rightarrow \infty,则\left | x^{t}-x_{n} \right |\leq \frac{k^{n}}{1-k}\left | x_{1}-x_{0} \right |\\ iii):xn+pxn1kknx1x0,p, xtxn 1kknx1x0 注: ∣ f ( x ) − f ( y ) ∣ ≤ k ∣ x − y ∣ “ L i p s c h i t z 条件”; ∣ f ( x ) − f ( y ) ∣ ≤ k ∣ x − y ∣ ⇒ f ( x ) ∈ C ( R ) < 连续 > ; C a u c h y 收敛准则 注:\left |f\left ( x \right )-f\left ( y \right ) \right |\leq k\left | x-y \right |“Lipschitz条件”;\\ \left |f\left ( x \right )-f\left ( y \right ) \right |\leq k\left | x-y \right |\Rightarrow f\left ( x \right )\in C\left ( R \right )<连续>;\\ Cauchy收敛准则\\ 注:f(x)f(y)kxyLipschitz条件f(x)f(y)kxyf(x)C(R)<连续>Cauchy收敛准则

5 、运用重要极限;根据常用极限进行推导 : 5、运用重要极限;根据常用极限进行推导: 5、运用重要极限;根据常用极限进行推导:
1 ) lim ⁡ x → 0 s i n x x = 1 、 lim ⁡ x → f ( x ) s i n f ( x ) f ( x ) = 1 2 ) lim ⁡ x → 0 ( 1 + x ) 1 x = e ( lim ⁡ f ( x ) → 0 ( 1 + f ( x ) ) 1 f ( x ) = e ) lim ⁡ x → ∞ ( 1 + 1 x ) x = e ( lim ⁡ f ( x ) → ∞ ( 1 + 1 f ( x ) ) f ( x ) = e ) 3 ) lim ⁡ x → 0 l n ( 1 + x ) x = 1 4 ) lim ⁡ x → 0 a x − 1 x = l n a 5 ) lim ⁡ x → 0 ( 1 + x ) u − 1 x = u a n − b n = ( a − b ) ( a n − 1 b 0 + a n − 2 b 1 + . . . + a 0 b n − 1 ) 1) \lim_{x\rightarrow 0}\frac{sinx}{x}=1、\lim_{x\rightarrow f\left ( x \right )}\frac{sinf\left ( x \right )}{f\left ( x \right )}=1\\2) \lim_{x\rightarrow 0}\left ( 1+x \right )^{\frac{1}{x}}=e\left ( \lim_{f\left ( x \right )\rightarrow 0}\left ( 1+f\left ( x \right ) \right )^{\frac{1}{f\left ( x \right )}}=e \right )\\ \lim_{x\rightarrow \infty}\left ( 1+\frac{1}{x} \right )^{x}=e\left ( \lim_{f\left ( x \right )\rightarrow \infty}\left ( 1+\frac{1}{f\left ( x \right )} \right )^{f\left ( x \right )}=e \right )\\3) \lim_{x\rightarrow 0}\frac{ln\left ( 1+x \right )}{x}=1\\4)\lim_{x\rightarrow 0}\frac{a^{x}-1}{x}=lna\\5)\lim_{x\rightarrow 0}\frac{\left ( 1+x \right )^{u}-1}{x}=u\\a^{n}-b^{n}=\left ( a-b \right )\left ( a^{n-1}b^{0}+a^{n-2}b^{1}+...+a^{0}b^{n-1} \right ) 1)x0limxsinx=1xf(x)limf(x)sinf(x)=12)x0lim(1+x)x1=e(f(x)0lim(1+f(x))f(x)1=e)xlim(1+x1)x=e(f(x)lim(1+f(x)1)f(x)=e)3)x0limxln(1+x)=14)x0limxax1=lna5)x0limx(1+x)u1=uanbn=(ab)(an1b0+an2b1+...+a0bn1)

6 、泰勒展开式求极限 : 6、泰勒展开式求极限: 6、泰勒展开式求极限:
泰勒公式是将在 x = x 0 处具有 n 阶导数的函数 f ( x ) , 利用关于 ( x − x 0 ) 的 n 次多项式来逼近函数的方法; 泰勒公式是将在x=x _{0}处具有n阶导数的函数f\left (x\right ),\\利用关于(x-x _{0})的n次多项式来逼近函数的方法; 泰勒公式是将在x=x0处具有n阶导数的函数f(x)利用关于(xx0)n次多项式来逼近函数的方法; 1 ) T h : 若 f ( x ) 在 [ a , b ] 内 ∃ n 阶连续导数 , ∀ x 0 ∈ [ a , b ] 有, f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + . . . + f n ( x 0 ) n ! ( x − x 0 ) n + o ( ( x − x 0 ) n ) → p e a n a 余项 , f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + . . . + f n ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 L a g r a n g e 余项 → 对逼近误差,计算 / 估计 ; ξ = x 0 + θ ( x − x 0 ) , θ ∈ ( 0 , 1 ) 逼近理论: f ( x ) = T n ( x ) + R n ( x ) 1)Th:若f\left ( x \right )在\left [ a,b \right ]内\exists n阶连续导数,\\ \forall x_{0}\in \left [ a,b \right ]有,f\left ( x \right )=f\left ( x_{0} \right )+f^{'}\left ( x_{0} \right )\left ( x-x_{0} \right )+...+\frac{f^{n}\left ( x_{0} \right )}{n!}\left ( x-x_{0} \right )^{n}+\underset{\rightarrow peana余项}{o\left ( \left ( x-x_{0} \right )^{n} \right )},\\ f\left ( x \right )=f\left ( x_{0} \right )+f^{'}\left ( x_{0} \right )\left ( x-x_{0} \right )+...+\frac{f^{n}\left ( x_{0} \right )}{n!}\left ( x-x_{0} \right )^{n}+\underset{ Lagrange余项\rightarrow对逼近误差,计算/估计}{\frac{f^{\left ( n+1 \right )}\left ( \xi \right )}{\left ( n+1 \right )!}\left ( x-x_{0} \right )^{n+1}};\xi =x_{0}+\theta \left ( x-x_{0} \right ),\theta \in\left ( 0,1 \right )\\ 逼近理论:f\left ( x \right )=T_{n}\left ( x \right )+R_{n}\left ( x \right ) 1)Th:f(x)[a,b]n阶连续导数,x0[a,b]有,f(x)=f(x0)+f(x0)(xx0)+...+n!fn(x0)(xx0)n+peana余项o((xx0)n)f(x)=f(x0)+f(x0)(xx0)+...+n!fn(x0)(xx0)n+Lagrange余项对逼近误差,计算/估计(n+1)!f(n+1)(ξ)(xx0)n+1;ξ=x0+θ(xx0)θ(0,1)逼近理论:f(x)=Tn(x)+Rn(x) 2 ) M a c l a u l i n 公式: f ( 0 ) = f ( 0 ) + f ′ ( 0 ) x + . . . + f n ( 0 ) n ! x n + o ( x n ) → p e a n a 余项 3 ) e x = 1 + x + x 2 2 ! + . . . + x n n ! + o ( x n ) s i n x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! + o ( x 2 n − 1 ) , − ∞ < x < ∞ c o s x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) , − ∞ < x < ∞ l n ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) , − 1 < x < ∞ ( 1 + x ) α = 1 + c α 1 x + c α 2 x 2 + ⋯ + c α n x n + o ( x n ) , ⟨ α = n 时,二项式定理: c α n = α ⋅ ( α − 1 ) ⋅ . . . ⋅ ( α − n + 1 ) n ! ⟩ 2)Maclaulin公式:f\left ( 0 \right )=f\left ( 0 \right )+f^{'}\left ( 0 \right )x+...+\frac{f^{n}\left ( 0 \right )}{n!}x^{n}+\underset{\rightarrow peana余项}{o\left ( x^{n} \right )}\\ 3)e^{x}=1+x+\frac{x^{2}}{2!}+...+\frac{x^{n}}{n!}+o\left ( x^{n} \right )\\sinx=x- \frac { x^ { 3 } } { 3 ! } + \frac { x ^ { 5 } } {5 ! } - \frac { x ^ { 7 } } { 7 ! } + \cdots + (-1)^{n-1}\frac { x ^ { 2n-1 } } {(2n-1) ! }+o\left ( x^{2n-1} \right ) , \quad - \infty < x < \infty\\cosx=1- \frac { x^ { 2 } } { 2 ! } + \frac { x ^ { 4 } } {4 ! } - \frac { x ^ { 6 } } { 6 ! } + \cdots + (-1)^{n}\frac { x ^ { 2n } } {(2n) ! }+o\left ( x^{2n} \right ) , \quad - \infty < x < \infty\\ln(1+x)=x- \frac { x^ { 2 } } { 2 } + \frac { x ^ { 3 } } {3 } - \frac { x ^ { 4 } } { 4 } + \cdots + (-1)^{n-1}\frac { x ^ { n } } {n }+o\left ( x^{n} \right ) , \quad -1 < x < \infty\\(1+x)^{\alpha}=1+c_\alpha^1x+ c_\alpha^2x^ { 2 } + \cdots + c_\alpha^n x ^ { n }+o\left ( x^{n} \right ) , \langle\alpha=n时,二项式定理:c_\alpha^n=\frac{\alpha\cdot(\alpha-1)\cdot...\cdot(\alpha-n+1)}{n!}\rangle 2)Maclaulin公式:f(0)=f(0)+f(0)x+...+n!fn(0)xn+peana余项o(xn)3)ex=1+x+2!x2+...+n!xn+o(xn)sinx=x3!x3+5!x57!x7++(1)n1(2n1)!x2n1+o(x2n1),<x<cosx=12!x2+4!x46!x6++(1)n(2n)!x2n+o(x2n),<x<ln(1+x)=x2x2+3x34x4++(1)n1nxn+o(xn),1<x<(1+x)α=1+cα1x+cα2x2++cαnxn+o(xn),α=n时,二项式定理:cαn=n!α(α1)...(αn+1)

7 、积分中值定理 : 7、积分中值定理: 7、积分中值定理:
积分第一中值定理 : 若函数 f ( x ) 在闭区间 [ a , b ] 上连续, 则在积分区间 [ a , b ] 上至少存在一个点 ε ,使得 ∫ a b f ( x ) d x = f ( ε ) ( b − a )   ,   a ≤ ε ≤ b 积分第一中值定理:若函数f\left(x\right)在闭区间\left[a,b\right]上连续,\\则在积分区间\left[a,b\right]上至少存在一个点\varepsilon,使得\\\int_{a}^{b}f\left(x\right)dx=f\left(\varepsilon\right)\left(b-a\right)\ ,\ a\le\varepsilon\le b 积分第一中值定理:若函数f(x)在闭区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ε,使得abf(x)dx=f(ε)(ba) , aεb 证明 证明 证明
设 f ( x ) 在 [ a , b ] 上连续,因为闭区间上连续函数必有最大最小值, 不妨设最大值为 M ,最小值为 m ,最大值和最小值可相等。 对 m ≤ f ( x ) ≤ M 两边同时积分可得: m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) 同除以 ( b − a ) 从而得到: m ≤ 1 b − a ∫ a b f ( x ) d x ≤ M 由连续函数的介值定理可知,必定 ∃ ε ∈ [ a , b ] , 使得 f ( ε ) = 1 ( b − a ) ∫ a b f ( x ) d x ,即: ∫ a b f ( x ) d x = f ( ε ) ( b − a ) , ∃ ε ∈ [ a , b ] 设f\left(x\right)在\left[a,b\right]上连续,因为闭区间上连续函数必有最大最小值,\\不妨设最大值为M,最小值为m,最大值和最小值可相等。\\对m\le f\left(x\right)\le M两边同时积分可得:\\m\left(b-a\right)\le\int_a^bf\left(x\right)dx\le M\left(b-a\right)\\同除以\left(b-a\right)从而得到:m\le\frac{1}{b-a}\int_a^bf\left(x\right)dx\le M\\由连续函数的介值定理可知,必定\exists\varepsilon\in[a,b],\\使得f\left(\varepsilon\right)=\frac{1}{(b-a)}\int_a^bf\left(x\right)dx,即:\int_a^bf\left(x\right)dx=f\left(\varepsilon\right)\left(b-a\right),\exists\varepsilon\in\left[a,b\right] f(x)[a,b]上连续,因为闭区间上连续函数必有最大最小值,不妨设最大值为M,最小值为m,最大值和最小值可相等。mf(x)M两边同时积分可得:m(ba)abf(x)dxM(ba)同除以(ba)从而得到:mba1abf(x)dxM由连续函数的介值定理可知,必定ε[a,b]使得f(ε)=(ba)1abf(x)dx,即:abf(x)dx=f(ε)(ba),ε[a,b]
二重积分的中值定理 : 设 f ( x , y ) 在有界闭区域 D 上连续,是 D 的面积, 则在 D 内至少存在一点,使得 : ∫ ∫ D f ( x , y ) d σ = f ( ε , μ ) ∙ σ 0 二重积分的中值定理:设f(x,y)在有界闭区域D上连续,是D的面积,\\则在D内至少存在一点,使得:\int_{ }^{ }\int_D^{ }f\left(x,y\right)d\sigma=f\left(\varepsilon,\mu\right)\bullet\sigma_0 二重积分的中值定理:f(x,y)在有界闭区域D上连续,是D的面积,则在D内至少存在一点,使得:Df(x,y)dσ=f(ε,μ)σ0
积分第一中值推广定理 : 积分第一中值推广定理: 积分第一中值推广定理:
如果函数 f ( x ) 、 g ( x ) 在闭区间 [ a , b ] 上连续, 且 g ( x ) 在 [ a , b ] 上不变号, 则在积分区间 [ a , b ] 上至少存在一个点 ε , 使得: ∫ a b f ( x ) g ( x ) d x = f ( ε ) ∫ a b g ( x ) d x 如果函数f\left(x\right)、g\left(x\right)在闭区间\left[a,b\right]上连续,\\且g\left(x\right)在\left[a,b\right]上不变号,\\则在积分区间\left[a,b\right]上至少存在一个点\varepsilon,\\使得:\int_a^bf(x)g(x)dx=f(\varepsilon)\int_a^bg(x)dx 如果函数f(x)g(x)在闭区间[a,b]上连续,g(x)[a,b]上不变号,则在积分区间[a,b]上至少存在一个点ε使得:abf(x)g(x)dx=f(ε)abg(x)dx

积分第二中值定理 : 积分第二中值定理: 积分第二中值定理:

形式 形式 形式
设 f ( x ) 在 [ a , b ] 上可积,考虑下列两种情况: ( 1 ) g ( x ) 在 [ a , b ] 上单调递减且在 x ∈ [ a , b ] 时, g ( x ) ≥ 0 , 那么存在ξ ∈ [ a , b ] 使得 ∫ a b f ( x ) g ( x ) d x = g ( a ) ∫ a ξ f ( x ) d x . ( 2 ) g ( x ) 在 [ a , b ] 上单调递增且在 x ∈ [ a , b ] 时, g ( x ) ≥ 0 , 那么存在ξ ∈ [ a , b ] 使得 ∫ a b f ( x ) g ( x ) d x = g ( b ) ∫ a ξ f ( x ) d x . 设f\left(x\right)在\left[a,b\right]上可积,考虑下列两种情况:\\(1)g(x)在\left[a,b\right]上单调递减且在x\in\left[a,b\right]时,g\left(x\right)\ge0,\\那么存在\text{ξ}\in\left[a,b\right]使得\int_a^bf\left(x\right)g\left(x\right)dx=g\left(a\right)\int_a^{\text{ξ}}f\left(x\right)dx.\\(2)g(x)在\left[a,b\right]上单调递增且在x\in\left[a,b\right]时,g\left(x\right)\ge0,\\那么存在\text{ξ}\in\left[a,b\right]使得\int_a^bf\left(x\right)g\left(x\right)dx=g\left(b\right)\int_a^{\text{ξ}}f\left(x\right)dx. f(x)[a,b]上可积,考虑下列两种情况:1g(x)[a,b]上单调递减且在x[a,b]时,g(x)0那么存在ξ[a,b]使得abf(x)g(x)dx=g(a)aξf(x)dx.2g(x)[a,b]上单调递增且在x[a,b]时,g(x)0那么存在ξ[a,b]使得abf(x)g(x)dx=g(b)aξf(x)dx.
证明 证明 证明
( 1 ) 设 F ( x ) = ∫ a x f ( t ) d t , x ∈ [ a , b ] . F ( x ) 是一个连续函数 , 故在 [ a , b ] 上有最小值 m 和最大值 M 设 g ( a ) = 0 由单调性知道 , g ( x ) = 0. ∫ a b f ( x ) g ( x ) d x = ∫ a b f ( x ) ⋅ 0 d x = 0 ⋅ ∫ a b f ( x ) d x = g ( a ) ∫ ξ b f ( x ) d x 设 g ( a ) > 0. 因为 g ( x ) 在 [ a , b ] 上是单调的 , 故可积 , 所以对任意 ε > 0 , L > 0 , 存在分割 T : a = x 0 < x 1 < x 2 < ⋯ < x n = b , s . t . ∑ i = 0 n − 1 ω i g Δ x i < ε L , 其中 ω i g 为 g ( x ) 在 [ x i , x i + ! ] 上的振幅 . 因 f ( x ) 在 [ a , b ] 上黎曼可积 , 故有界 , 记为 L 则 ∫ a b f ( x ) g ( x ) d x = ∑ i = 0 n ∫ x i x i + 1 f ( x ) g ( x ) d x = ∑ i = 0 n − 1 ∫ x i x i + 1 f ( x ) ( g ( x ) − g ( x i ) ) d x + ∑ i = 0 n − 1 ∫ x i x i + 1 f ( x ) g ( x i ) d x ≤ ∑ i = 0 n − 1 ∫ x i x i + 1 ∣ f ( x ) ∣ ∣ g ( x ) − g ( x i ) ∣ d x + ∑ i = 0 n − 1 g ( x i ) ( F ( x i + 1 ) − F ( x i ) ) ≤ L ∑ i = 0 n − 1 ω i g Δ x i + ∑ i = 0 n − 1 g ( x i ) ( F ( x i + 1 ) − F ( x i ) ) < ε + ∑ i = 1 n − 1 F ( x i ) ( g ( x i − 1 ) − g ( x i ) ) + F ( b ) g ( x n − 1 ) ≤ M ∑ i = 1 n − 1 ( g ( x i − 1 ) − g ( x i ) ) + ε + F ( b ) g ( x n − 1 ) = M g ( a ) + ε 这里用到阿贝尔变换 ∑ k = 0 n a k b k = a n S n + ∑ k = 0 n − 1 S k ( a k − a k + 1 ) , 同理有原式 ≥ − ∑ i = 0 n − 1 ∫ x i x i + 1 ∣ f ( x ) ∣ ∣ g ( x ) − g ( x i ) ∣ d x + ∑ i = 0 n − 1 g ( x i ) ( F ( x i + 1 ) − F ( x i ) ) ≥ m g ( a ) − ε 由上述证明知道 m g ( a ) − ε < ∫ a b f ( x ) g ( x ) d x < M g ( a ) + ε 得 m g ( a ) ≤ ∫ a b f ( x ) g ( x ) d x ≤ M g ( a ) , 从而 m ≤ ∫ a b f ( x ) g ( x ) d x g ( a ) ≤ M 所以 ∃ ξ ∈ [ a , b ] , F ( ξ ) = ∫ b a f ( x ) g ( x ) d x g ( a ) 从而 ∫ a b f ( x ) g ( x ) d x = g ( a ) ∫ a ξ f ( x ) d x (1)设F\left(x\right)=\int_a^xf\left(t\right)dt,x\in\left[a,b\right].F\left(x\right)是一个连续函数,\\故在\left[a,b\right]上有最小值m和最大值M\\设g\left(a\right)=0由单调性知道,g\left(x\right)=0.\\\int_a^bf\left(x\right)g\left(x\right)dx=\int_a^bf\left(x\right)·0dx=0·\int_a^bf\left(x\right)dx=g\left(a\right)\int_ξ^{\text{b}}f\left(x\right)dx\\设g\left(a\right)>0.因为g\left(x\right)在\left[a,b\right]上是单调的,故可积,\\所以对任意\varepsilon>0,L>0,\\存在分割T:a=x_0<x_1<x_2<\cdots<x_n=b,s.t.\sum_{i=0}^{n-1}\omega_i^g\Delta x_i<\frac{\varepsilon}{L},\\其中\omega_i^g为g\left(x\right)在[x_i,x_{i+!}]上的振幅.\\因f\left(x\right)在\left[a,b\right]上黎曼可积,故有界,记为L则\\\int_a^bf\left(x\right)g\left(x\right)dx=\sum_{i=0}^n\int_{x_i}^{x_{i+1}}f\left(x\right)g\left(x\right)dx\\=\sum_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}f\left(x\right)\left(g\left(x\right)-g\left(x_i\right)\right)dx+\sum_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}f\left(x\right)g\left(x_i\right)dx\\\le\sum_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}\left|f\left(x\right)\right|\left|g\left(x\right)-g\left(x_i\right)\right|dx+\sum_{i=0}^{n-1}g\left(x_i\right)\left(F\left(x_{i+1}\right)-F\left(x_i\right)\right)\\\le L\sum_{i=0}^{n-1}\omega_i^g\Delta x_i+\sum_{i=0}^{n-1}g\left(x_i\right)\left(F\left(x_{i+1}\right)-F\left(x_i\right)\right)\\<\varepsilon+\sum_{i=1}^{n-1}F\left(x_i\right)\left(g\left(x_{i-1}\right)-g\left(x_i\right)\right)+F\left(b\right)g\left(x_{n-1}\right)\\\le M\sum_{i=1}^{n-1}(g(x_{i-1})-g(x_i))+\varepsilon+F\left(b\right)g\left(x_{n-1}\right)\\=Mg\left(a\right)+\varepsilon\\这里用到阿贝尔变换\sum_{k=0}^na_kb_k=a_nS_n+\sum_{k=0}^{n-1}S_k\left(a_k-a_{k+1}\right),\\同理有原式\\\ge-\sum_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}\left|f\left(x\right)\right|\left|g\left(x\right)-g\left(x_i\right)\right|dx+\sum_{i=0}^{n-1}g\left(x_i\right)\left(F\left(x_{i+1}\right)-F\left(x_i\right)\right)\\\ge mg\left(a\right)-\varepsilon\\由上述证明知道mg\left(a\right)-\varepsilon<\int_a^bf\left(x\right)g\left(x\right)dx<Mg\left(a\right)+\varepsilon\\得mg\left(a\right)\le\int_a^bf\left(x\right)g\left(x\right)dx\le Mg\left(a\right),\\从而m\le\frac{\int_a^bf\left(x\right)g\left(x\right)dx}{g\left(a\right)}\le M\\所以\exists\text{ξ}\in\left[a,b\right],F\left(\text{ξ}\right)=\frac{\int_b^af(x)g(x)dx}{g(a)}\\从而\int_a^bf\left(x\right)g\left(x\right)dx=g\left(a\right)\int_a^{\text{ξ}}f\left(x\right)dx (1)F(x)=axf(t)dt,x[a,b].F(x)是一个连续函数,故在[a,b]上有最小值m和最大值Mg(a)=0由单调性知道,g(x)=0.abf(x)g(x)dx=abf(x)0dx=0abf(x)dx=g(a)ξbf(x)dxg(a)>0.因为g(x)[a,b]上是单调的,故可积,所以对任意ε>0,L>0,存在分割T:a=x0<x1<x2<<xn=bs.t.i=0n1ωigΔxi<Lε,其中ωigg(x)[xi,xi+!]上的振幅.f(x)[a,b]上黎曼可积,故有界,记为Labf(x)g(x)dx=i=0nxixi+1f(x)g(x)dx=i=0n1xixi+1f(x)(g(x)g(xi))dx+i=0n1xixi+1f(x)g(xi)dxi=0n1xixi+1f(x)g(x)g(xi)dx+i=0n1g(xi)(F(xi+1)F(xi))Li=0n1ωigΔxi+i=0n1g(xi)(F(xi+1)F(xi))<ε+i=1n1F(xi)(g(xi1)g(xi))+F(b)g(xn1)Mi=1n1(g(xi1)g(xi))+ε+F(b)g(xn1)=Mg(a)+ε这里用到阿贝尔变换k=0nakbk=anSn+k=0n1Sk(akak+1),同理有原式i=0n1xixi+1f(x)g(x)g(xi)dx+i=0n1g(xi)(F(xi+1)F(xi))mg(a)ε由上述证明知道mg(a)ε<abf(x)g(x)dx<Mg(a)+εmg(a)abf(x)g(x)dxMg(a),从而mg(a)abf(x)g(x)dxM所以ξ[a,b],F(ξ)=g(a)baf(x)g(x)dx从而abf(x)g(x)dx=g(a)aξf(x)dx
积分第二中值推广定理 : 积分第二中值推广定理: 积分第二中值推广定理:
一、如果函数 f ( x ) 、 g ( x ) , 在闭区间 [ a , b ] 上可积, 且 f ( x ) 为单调函数,则在积分区间 [ a , b ] 上至少存在一个点 ε ,使得: ∫ a b f ( x ) g ( x ) d x = f ( a ) ∫ a ε g ( x ) d x + f ( b ) ∫ ε b g ( x ) d x 二、如果函数 f ( x ) 、 g ( x ) , 在闭区间 [ a , b ] 上可积, f ( x ) ≥ 0 且为单调递减函数,则在积分区间 [ a , b ] 上至少存在一个点 ε , 使得: ∫ a b f ( x ) g ( x ) d x = f ( a ) ∫ a ε g ( x ) d x 三、如果函数 f ( x ) 、 g ( x ) , 在闭区间 [ a , b ] 上可积, f ( x ) ≥ 0 且为单调递增函数,则在积分区间 [ a , b ] 上至少存在一个点 ε , 使得: ∫ a b f ( x ) g ( x ) d x = f ( b ) ∫ a ε g ( x ) d x 一、如果函数f\left(x\right)、g\left(x\right),在闭区间\left[a,b\right]上可积,\\且f\left(x\right)为单调函数,则在积分区间\left[a,b\right]上至少存在一个点\varepsilon,使得:\\\int_a^bf\left(x\right)g\left(x\right)dx=f\left(a\right)\int_a^{\varepsilon}g\left(x\right)dx+f\left(b\right)\int_{\varepsilon}^bg\left(x\right)dx\\二、如果函数f\left(x\right)、g\left(x\right),在闭区间\left[a,b\right]上可积,\\f\left(x\right)\ge0且为单调递减函数,则在积分区间\left[a,b\right]上至少存在一个点\varepsilon,\\使得:\int_a^bf\left(x\right)g\left(x\right)dx=f\left(a\right)\int_a^{\varepsilon}g\left(x\right)dx\\三、如果函数f\left(x\right)、g\left(x\right),在闭区间\left[a,b\right]上可积,\\f\left(x\right)\ge0且为单调递增函数,则在积分区间\left[a,b\right]上至少存在一个点\varepsilon,\\使得:\int_a^bf\left(x\right)g\left(x\right)dx=f\left(b\right)\int_a^{\varepsilon}g\left(x\right)dx 一、如果函数f(x)g(x),在闭区间[a,b]上可积,f(x)为单调函数,则在积分区间[a,b]上至少存在一个点ε,使得:abf(x)g(x)dx=f(a)aεg(x)dx+f(b)εbg(x)dx二、如果函数f(x)g(x),在闭区间[a,b]上可积,f(x)0且为单调递减函数,则在积分区间[a,b]上至少存在一个点ε使得:abf(x)g(x)dx=f(a)aεg(x)dx三、如果函数f(x)g(x),在闭区间[a,b]上可积,f(x)0且为单调递增函数,则在积分区间[a,b]上至少存在一个点ε使得:abf(x)g(x)dx=f(b)aεg(x)dx

8 、 s t o l z 定理 : 8、stolz定理: 8stolz定理:
S t o l z 定理处理数列不定式极限,一般用于 ∗ / ∞ 型的极限 ( 即分母趋于正无穷大的分式极限,分子趋不趋于无穷大无所谓 ) 、 0 / 0 型极限 ( 此时要求分子分母都以 0 为极限 ) Stolz定理处理数列不定式极限,一般用于*/∞型的极限\\(即分母趋于正无穷大的分式极限,分子趋不趋于无穷大无所谓)、\\0/0型极限(此时要求分子分母都以0为极限) Stolz定理处理数列不定式极限,一般用于/∞型的极限(即分母趋于正无穷大的分式极限,分子趋不趋于无穷大无所谓)0/0型极限(此时要求分子分母都以0为极限) 1 ∘ 、 T h ( 0 0 ) :如果 a n , b n 满足 : 1 ) a n → 0 , ( n → ∞ ) , 2 ) b n ↓ → 0 , 3 ) lim ⁡ n → ∞ a n + 1 − a n b n + 1 − b n = L , } ⇒ lim ⁡ n → ∞ a n b n = L 1^{\circ}、Th\left ( \frac{0}{0} \right ):如果a_{n},b_{n}满足:\\ \begin{aligned} \left.\begin{aligned} 1)a_{n}\rightarrow0,(n\rightarrow\infty),\\ 2)b_{n}\downarrow\rightarrow0,\\ %加&指定对齐位置 3)\lim_{n\rightarrow \infty}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L, \end{aligned} \right\}\Rightarrow\lim_{n\rightarrow \infty}\frac{a_{n}}{b_{n}}=L %加右} \qquad \end{aligned} 1Th(00):如果anbn满足:1)an0(n),2)bn↓→0,3)nlimbn+1bnan+1an=L, nlimbnan=L 2 ∘ 、 T h ( ∞ ∞ ) : 如果 a n , b n 满足 : 1 ) b n ↑ 严 → ∞ , 2 ) lim ⁡ n → ∞ a n + 1 − a n b n + 1 − b n = L , } ⇒ lim ⁡ n → ∞ a n b n = L 2^{\circ}、Th\left ( \frac{\infty}{\infty} \right ):如果a_{n},b_{n}满足:\\ \begin{aligned} \left.\begin{aligned} 1)b_{n}\uparrow严\rightarrow\infty,\\ %加&指定对齐位置 2)\lim_{n\rightarrow \infty}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L, \end{aligned} \right\}\Rightarrow\lim_{n\rightarrow \infty}\frac{a_{n}}{b_{n}}=L %加右} \qquad \end{aligned} 2Th():如果anbn满足:1)bn,2)nlimbn+1bnan+1an=L, nlimbnan=L 3 ∘ 、推广:若 lim ⁡ n → ∞ a n + 1 − a n = L ,则 lim ⁡ n → ∞ a n n = L 3^{\circ}、推广:若\lim_{n\rightarrow \infty}{a_{n+1}-a_{n}}=L,则\lim_{n\rightarrow \infty}\frac{a_{n}}{n}=L 3、推广:若nliman+1an=L,则nlimnan=L 证明:令 b n = n , b n ↑ 严 → ∞ , 由 S t o l z . T h 知, lim ⁡ n → ∞ a n n = lim ⁡ n → ∞ a n + 1 − a n n + 1 − n = lim ⁡ n → ∞ a n + 1 − a n = L 证明:令b_{n}=n,b_{n}\uparrow严\rightarrow\infty,\\由Stolz.Th知,\lim_{n\rightarrow \infty}\frac{a_{n}}{n}=\lim_{n\rightarrow \infty}\frac{a_{n+1}-a_{n}}{n+1-n}=\lim_{n\rightarrow \infty}{a_{n+1}-a_{n}}=L 证明:令bn=nbnStolz.Th知,nlimnan=nlimn+1nan+1an=nliman+1an=L

9 、托普利兹变换 : 9、托普利兹变换: 9、托普利兹变换:

10 、阿贝尔变换 : 10、阿贝尔变换: 10、阿贝尔变换:
( 分部求和法 ) 离散的微分 , 对 级数 的离散形式作求和 , 差分的符号是 Δ ,这里的差分指的是前向差分 , 定义为 Δ ( a n b n ) = a n + 1 b n + 1 − a n b n = a n + 1 b n + 1 − a n + 1 b n + a n + 1 b n − a n b n = a n + 1 ( b n + 1 − b n ) + b n ( a n + 1 − a n ) = a n + 1 Δ b n + b n Δ a n (分部求和法)离散的微分,对{\textbf{级数}}的离散形式作求和,\\差分的符号是\Delta,这里的差分指的是前向差分,定义为\\\begin{aligned}\Delta(a_nb_n)&=a_{n+1}b_{n+1}-a_nb_n\\ &=a_{n+1}b_{n+1}-a_{n+1}b_n+a_{n+1}b_n-a_nb_n\\ &=a_{n+1}(b_{n+1}-b_n)+b_n(a_{n+1}-a_n)\\ &=a_{n+1}\Delta b_n+b_n\Delta a_n\end{aligned} (分部求和法)离散的微分,级数的离散形式作求和,差分的符号是Δ,这里的差分指的是前向差分,定义为Δ(anbn)=an+1bn+1anbn=an+1bn+1an+1bn+an+1bnanbn=an+1(bn+1bn)+bn(an+1an)=an+1Δbn+bnΔan
记 Δ ( a k b k ) = a k + 1 Δ b k + b k Δ a k 记\Delta(a_kb_k)=a_{k+1}\Delta b_k+b_k\Delta a_k Δ(akbk)=ak+1Δbk+bkΔak

两边求和得到 两边求和得到 两边求和得到
∑ k = 1 n − 1 Δ ( a k b k ) = ∑ k = 1 n − 1 a k + 1 Δ ( b k ) + ∑ k = 1 n − 1 b k Δ ( a k ) \sum_{k=1}^{n-1}\Delta(a_kb_k)=\sum_{k=1}^{n-1}a_{k+1}\Delta(b_k)+\sum_{k=1}^{n-1}b_k\Delta(a_k) k=1n1Δ(akbk)=k=1n1ak+1Δ(bk)+k=1n1bkΔ(ak)

a n b n − a 1 b 1 = ∑ k = 1 n − 1 a k + 1 ( b k + 1 − b k ) + ∑ k = 1 n − 1 b k ( a k + 1 − a k ) a_nb_n-a_1b_1=\sum_{k=1}^{n-1}a_{k+1}(b_{k+1}-b_k)+\sum_{k=1}^{n-1}b_k(a_{k+1}-a_k) anbna1b1=k=1n1ak+1(bk+1bk)+k=1n1bk(ak+1ak)

把 b n 变为 B n , ( B k = ∑ i = 1 k b i )代到上边的式子里 把b_n变为B_n,(B_{k}=\sum_{i=1}^{k}b_{i})代到上边的式子里 bn变为Bn,Bk=i=1kbi)代到上边的式子里
a n B n − a 1 B 1 = ∑ k = 1 n − 1 a k + 1 ( B k + 1 − B k ) + ∑ k = 1 n − 1 B k ( a k + 1 − a k ) a n B n − a 1 b 1 = ∑ k = 1 n − 1 a k + 1 b k + 1 + ∑ k = 1 n − 1 B k ( a k + 1 − a k ) a n B n = ∑ k = 1 n a k b k + ∑ k = 1 n − 1 B k ( a k + 1 − a k ) a n B n + ∑ k = 1 n − 1 B k ( a k − a k + 1 ) = ∑ k = 1 n a k b k a_n B_n-a_1B_1=\sum_{k=1}^{n-1}a_{k+1}(B_{k+1}-B_k)+\sum_{k=1}^{n-1}B_k(a_{k+1}-a_k)\\ a_n B_n-a_1b_1=\sum_{k=1}^{n-1}a_{k+1}b_{k+1}+\sum_{k=1}^{n-1}B_k(a_{k+1}-a_k)\\ a_n B_n=\sum_{k=1}^{n}a_k b_k+\sum_{k=1}^{n-1}B_k(a_{k+1}-a_k)\\ a_n B_n+\sum_{k=1}^{n-1}B_k(a_k-a_{k+1})=\sum_{k=1}^{n}a_kb_k anBna1B1=k=1n1ak+1(Bk+1Bk)+k=1n1Bk(ak+1ak)anBna1b1=k=1n1ak+1bk+1+k=1n1Bk(ak+1ak)anBn=k=1nakbk+k=1n1Bk(ak+1ak)anBn+k=1n1Bk(akak+1)=k=1nakbk

(从 m 到 n 求和) a n + 1 b n + 1 − a m b m = ∑ k = m n a k + 1 ( b k + 1 − b k ) + ∑ k = m n b k ( a k + 1 − a k ) = ∑ k = m n a k ( b k + 1 − b k ) + ∑ k = m n b k + 1 ( a k + 1 − a k ) \color{red}(从m到n求和)\\a_{n+1}b_{n+1}-a_mb_m\\=\sum_{k=m}^n a_{k+1}(b_{k+1}-b_k)+\sum_{k=m}^n b_k(a_{k+1}-a_k)\\=\sum_{k=m}^n a_k(b_{k+1}-b_k)+\sum_{k=m}^n b_{k+1}(a_{k+1}-a_k) (从mn求和)an+1bn+1ambm=k=mnak+1(bk+1bk)+k=mnbk(ak+1ak)=k=mnak(bk+1bk)+k=mnbk+1(ak+1ak)

11 、化为定积分 : 11、化为定积分: 11、化为定积分:

12 、级数收敛 : 12、级数收敛: 12、级数收敛:
{ 1 ) ∑ a n 收敛 ⇒ a n → 0 2 ) a n 收敛 ⇔ ∑ ( a n + 1 − a n ) 收敛 3 ) { t n } 有界,若 ∣ x n ∣ 满足 ∣ x n + 1 − x n ∣ ≤ t n + 1 − t n , 则 x n 收敛 \begin{cases}1) \sum a_{n}收敛\Rightarrow a_{n}\rightarrow 0\\2)a_{n}收敛 \Leftrightarrow \sum \left ( a_{n+1} -a_{n}\right )收敛\\3)\left \{t _{n} \right \}有界, 若\left | x_{n} \right |满足\left | x_{n+1}-x_{n} \right |\leq t_{n+1}-t_{n},则x_{n}收敛 \end{cases}\\ 1)an收敛an02)an收敛(an+1an)收敛3){tn}有界,若xn满足xn+1xntn+1tn,xn收敛

13 、上下极限 : 13、上下极限: 13、上下极限:

14 、傅里叶级数 : 14、傅里叶级数: 14、傅里叶级数:

15 、幂级数求和 : 15、幂级数求和: 15、幂级数求和:

16 、无穷乘积 : 16、无穷乘积: 16、无穷乘积:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值