绝对值不等式的公式为: 绝对值不等式的公式为: 绝对值不等式的公式为:
∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b||\leq|a\pm b|\leq|a|+|b| ∣∣a∣−∣b∣∣≤∣a±b∣≤∣a∣+∣b∣
− ∣ a ∣ ≤ a ≤ ∣ a ∣ ① − ∣ b ∣ ≤ b ≤ ∣ b ∣ ② − ∣ b ∣ ≤ -b ≤ ∣ b ∣ ③ \begin{matrix}-\left|a\right|\leq a\leq\left|a\right| &\text{①}\\ \\ -\left|\text{b}\right|\leq\text{b}\leq\left|\text{b}\right|&\text{②}\\ \\ -\left|\text{b}\right|\leq\text{-b}\leq\left|\text{b}\right|&\text{③}\end{matrix} −∣a∣≤a≤∣a∣−∣b∣≤b≤∣b∣−∣b∣≤-b≤∣b∣①②③
由①
+
②得:
由①+②得:
由①+②得:
−
(
∣
a
∣
+
∣
b
∣
)
≤
a
+
b
≤
∣
a
∣
+
∣
b
∣
⇒
∣
a
+
b
∣
≤
∣
a
∣
+
∣
b
∣
-(\left|a\right|+\left|b\right|)\leq a+b\leq\left|a\right|+\left|b\right|\Rightarrow \left|a+b\right|\le\left|a\right|+\left|b\right|
−(∣a∣+∣b∣)≤a+b≤∣a∣+∣b∣⇒∣a+b∣≤∣a∣+∣b∣
由①
+
③得:
由①+③得:
由①+③得:
−
(
∣
a
∣
+
∣
b
∣
)
≤
a
−
b
≤
∣
a
∣
+
∣
b
∣
⇒
∣
a
−
b
∣
≤
∣
a
∣
+
∣
b
∣
-(\left|a\right|+\left|b\right|)\leq a-b\leq\left|a\right|+\left|b\right|\Rightarrow \big|a-b\big|\le\big|a\big|+\big|b\big|
−(∣a∣+∣b∣)≤a−b≤∣a∣+∣b∣⇒
a−b
≤
a
+
b
而
而
而
∣
a
∣
=
∣
(
a
+
b
)
−
b
∣
=
∣
(
a
−
b
)
+
b
∣
∣
b
∣
=
∣
(
b
+
a
)
−
a
∣
=
∣
(
b
−
a
)
+
a
∣
\begin{array}{l}\left|a\right|=\left|(a+b)-b\right|=\left|(a-b)+b\right|\\ \left|b\right|=\left|(b+a)-a\right|=\left|(b-a)+a\right|\end{array}
∣a∣=∣(a+b)−b∣=∣(a−b)+b∣∣b∣=∣(b+a)−a∣=∣(b−a)+a∣
由 ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ 得 : 由\left|a+b\right|\le\left|a\right|+\left|b\right|得: 由∣a+b∣≤∣a∣+∣b∣得:
∣ a ∣ = ∣ ( a + b ) − b ∣ ≤ ∣ a + b ∣ + ∣ − b ∣ ⇒ ∣ a ∣ − ∣ b ∣ ≤ ∣ a + b ∣ ⑥ ∣ b ∣ = ∣ ( b + a ) − a ∣ ≤ ∣ b + a ∣ + ∣ − a ∣ ⇒ ∣ a ∣ − ∣ b ∣ ≥ − ∣ a + b ∣ ⑦ \begin{array}{l}\left|a\right|=\left|(a+b)-b\right|\leq\left|a+b\right|+\left|-b\right|\Rightarrow \left|a\right|-\left|b\right|\leq\left|a+b\right|&\text{⑥}\\ \left|b\right|=\left|\left(b+a\right)-a\right|\leq\left|b+a\right|+\left|-a\right|\Rightarrow \left|a\right|-\left|b\right|\geq-\left|a+b\right|&\text{⑦}\end{array} ∣a∣=∣(a+b)−b∣≤∣a+b∣+∣−b∣⇒∣a∣−∣b∣≤∣a+b∣∣b∣=∣(b+a)−a∣≤∣b+a∣+∣−a∣⇒∣a∣−∣b∣≥−∣a+b∣⑥⑦
∣ a ∣ = ∣ ( a − b ) + b ∣ ≤ ∣ a − b ∣ + ∣ b ∣ = > ∣ a ∣ − ∣ b ∣ ≤ ∣ a − b ∣ ⑧ ∣ b ∣ = ∣ ( b − a ) + a ∣ ≤ ∣ b − a ∣ + ∣ a ∣ = > ∣ a ∣ − ∣ b ∣ ≥ − ∣ a − b ∣ ⑨ \begin{array}{l}\left|a\right|=\left|(a-b)+b\right|\le\left|a-b\right|+\left|b\right|=>\left|a\right|-\left|b\right|\le\left|a-b\right|&\text{⑧}\\ \left|b\right|=\left|(b-a)+a\right|\le\left|b-a\right|+\left|a\right|=>\left|a\right|-\left|b\right|\ge-\left|a-b\right|&\text{⑨}\end{array} ∣a∣=∣(a−b)+b∣≤∣a−b∣+∣b∣=>∣a∣−∣b∣≤∣a−b∣∣b∣=∣(b−a)+a∣≤∣b−a∣+∣a∣=>∣a∣−∣b∣≥−∣a−b∣⑧⑨
由⑥,⑦得: ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a + b ∣ 或者: ∣ a ∣ = ∣ a + b − b ∣ ≤ ∣ b ∣ + ∣ a + b ∣ → ∣ a ∣ − ∣ b ∣ ≤ ∣ a + b ∣ a , b 交换 → ∣ b ∣ − ∣ a ∣ ≤ ∣ a + b ∣ 由⑥,⑦得:||a|-|b||\leq|a+ b|\\或者:\\|a|=|a+b-b|\leq|b|+|a+b|\rightarrow |a|-|b|\leq|a+ b|\\a,b交换\rightarrow |b|-|a|\leq|a+ b| 由⑥,⑦得:∣∣a∣−∣b∣∣≤∣a+b∣或者:∣a∣=∣a+b−b∣≤∣b∣+∣a+b∣→∣a∣−∣b∣≤∣a+b∣a,b交换→∣b∣−∣a∣≤∣a+b∣
由⑧,⑨得: ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ 或者: ∣ a ∣ = ∣ a − b + b ∣ ≤ ∣ b ∣ + ∣ a − b ∣ → ∣ a ∣ − ∣ b ∣ ≤ ∣ a − b ∣ a , b 交换 → ∣ b ∣ − ∣ a ∣ ≤ ∣ a − b ∣ 由⑧,⑨得:||a|-|b||\leq|a- b|\\或者:\\|a|=|a-b+b|\leq|b|+|a-b|\rightarrow |a|-|b|\leq|a- b|\\a,b交换\rightarrow |b|-|a|\leq|a- b| 由⑧,⑨得:∣∣a∣−∣b∣∣≤∣a−b∣或者:∣a∣=∣a−b+b∣≤∣b∣+∣a−b∣→∣a∣−∣b∣≤∣a−b∣a,b交换→∣b∣−∣a∣≤∣a−b∣
等号成立的条件(特别是求最值),即: ∣ a − b ∣ = ∣ a ∣ + ∣ b ∣ → a b ≤ 0 ∣ a ∣ − ∣ b ∣ = ∣ a + b ∣ → b ( a + b ) ≤ 0 ∣ a ∣ − ∣ b ∣ = ∣ a − b ∣ → b ( a − b ) ≥ 0 等号成立的条件(特别是求最值),即:\\\begin{array}{l}\left|a-b\right|=\left|a\right|+\left|b\right|\rightarrow ab\leq0\\ \left|a\right|-\left|b\right|=\left|a+b\right|\rightarrow b(a+b)\leq0\\ \left|a\right|-\left|b\right|=\left|a-b\right|\rightarrow b(a-b)\geq0\end{array} 等号成立的条件(特别是求最值),即:∣a−b∣=∣a∣+∣b∣→ab≤0∣a∣−∣b∣=∣a+b∣→b(a+b)≤0∣a∣−∣b∣=∣a−b∣→b(a−b)≥0
注:利用 ∣ a − b ∣ = ∣ a ∣ + ∣ b ∣ → a b ≤ 0 注:利用\left|a-b\right|=\left|a\right|+\left|b\right|\rightarrow ab\leq0 注:利用∣a−b∣=∣a∣+∣b∣→ab≤0
∣ a ∣ − ∣ b ∣ = ∣ a + b ∣ → ∣ a ∣ = ∣ b ∣ + ∣ a + b ∣ → ∣ a + b − b ∣ = ∣ b ∣ + ∣ a + b ∣ |a|-|b|=|a+b|\\\rightarrow |a|=|b|+|a+b|\\\rightarrow |a+b-b|=|b|+|a+b| ∣a∣−∣b∣=∣a+b∣→∣a∣=∣b∣+∣a+b∣→∣a+b−b∣=∣b∣+∣a+b∣
∣ a ∣ − ∣ b ∣ = ∣ a − b ∣ → ∣ a ∣ = ∣ b ∣ + ∣ a − b ∣ → ∣ a − b + b ∣ = ∣ b ∣ + ∣ a − b ∣ \left|a\right|-\left|b\right|=\left|a-b\right|\\\rightarrow |a|=|b|+|a-b|\\\rightarrow |a-b+b|=|b|+|a-b| ∣a∣−∣b∣=∣a−b∣→∣a∣=∣b∣+∣a−b∣→∣a−b+b∣=∣b∣+∣a−b∣