
成长书屋
文章平均质量分 75
本专栏收集了博主的主要精华文章,经验精帖文章,非常具有参考价值。
优惠券已抵扣
余额抵扣
还需支付
¥39.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
一个处女座的程序猿
2025年初博主2本新书(机器学习耗时5年/大模型耗时3年)即将开售!人工智能硕学历,拥有十多项发专利(6项)和软著(9项),包括国际期刊SCI内多篇论文,多个国家级证书(2个国三级、3个国四级),曾获国内外“人工智能算法”竞赛(包括国家级省市级等,一等奖5项、二等奖4项、三等奖2项)证书十多项,以上均第一作者身份,并拥有省市校级个人荣誉证书十多项。目前也是国内知名博主,连续3年获CSDN十大博客之星,荣获达摩院评测官、阿里社区/CSDN/华为社区等十多个开发者社区专家博主荣誉,曾受邀阿里/华为/谷歌等社区采访-评审-论坛几十次。截止2022年,AI领域粉丝超100万,文章阅读量超5000万
展开
-
DayDayUp:理性系列—提升效率和思维认知的五类工具(七W/SWOT/PDCA/KISS/3W等)—分析决策与规划类、复盘与总结类、思维与创新类、时间管理与效率提升类、沟通与协作类
七问分析法分析What(是什么)、How(怎么做)、Why(为什么)、When(何时)、Where(在哪里)、Who(谁)、How Much(多少)七个关键问题。全面分析问题,厘清任务细节,制定清晰的解决方案,确保决策和执行的全面性。SWOT竞争分析法S(strengths)优势、W(weaknesses)劣势、O(opportunities)机会、T(threatens)威胁用于分析内外部环境,制定战略决策,明确优劣势,抓住机遇,规避风险PDCA循环法。原创 2025-01-24 22:00:00 · 1226 阅读 · 0 评论 -
LLMs之NPU之Ascend之PyTorch:基于华为昇腾NPU设备实现PyTorch模型迁移和训练之单机多卡+混合精度训练手动迁移—导入支持库、参数配置、设备映射、进程管理、模型迁移、数据加载
LLMs之NPU之Ascend之PyTorch:基于华为昇腾NPU设备实现PyTorch模型迁移和训练之单机多卡+混合精度训练手动迁移—导入支持库、参数配置、设备映射、进程管理、模型迁移、数据加载、训练过程等多方面调整目录大模型软硬配置—对比英伟达GPU和华为NPU—适配方案细节基于华为昇腾NPU设备实现PyTorch模型迁移和训练之单机多卡+混合精度训练手动迁移—导入支持库、参数配置、设备映射、进程管理、模型迁移、数据加载、训练过程等多方面调整大模型软硬配置—对比英伟达GPU和华为原创 2024-11-12 21:37:50 · 1343 阅读 · 0 评论 -
LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3
LLMs之Llama3:基于colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5倍~30+减少50%的内存占用】)对llama-3-8b-Instruct-bnb-4bit模型采用alpaca数据集实现CLI方式/GUI傻瓜可视化方式进行LoRA指令微调→模型推理测试→CLI方式合并权重目录基于colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5倍~30+减少5原创 2024-04-24 01:54:43 · 2076 阅读 · 0 评论 -
Algorithm:【算法进阶之路】之算法面试刷题集合—六大高级算法(枚举算法、递归思想、回溯算法、分治思想、动态规划、贪心算法)—最经典二十道算法刷题集合(问题详解+解题思路+代码实现)之最强攻略
Algorithm:【算法进阶之路】之算法面试刷题集合—六大高级算法(枚举算法、回溯算法、递归思想、分治思想、动态规划、贪心算法)—最经典二十道算法刷题集合(问题详解+解题思路+代码实现)之最强攻略目录六大高级算法最经典二十道算法刷题集合1、枚举算法相关的问题:约瑟夫环、排列组合2、回溯算法相关的问题:N皇后、图的着色、全排列3、递归思想相关的问题:斐波那契数列、汉诺塔、N皇后4、分治算法相关的问题:快速排序/归并排序、逆序对、最大公约数原创 2019-10-23 19:39:33 · 385 阅读 · 0 评论 -
Algorithm:【算法进阶之路】之算法面试刷题集合—数组与排序相关算法题(数学问题—两数之和/岛屿的最大面积/岛屿数量/搜索旋转排序数组/寻找两个正序数组的中位数/最长连续递增序列/最长上升子序列
Algorithm:【算法进阶之路】之算法面试刷题集合—数组与排序相关算法题(数学问题—两数之和/岛屿的最大面积/岛屿数量/搜索旋转排序数组/寻找两个正序数组的中位数/最长连续递增序列/最长上升子序列/数组中的第K个最大元素/链表中倒数第k个节点等)目录相关题库一、数组与排序相关的算法题相关题库企业题库(按照考试频率):CodeTop企业题库GitHub题库地址:https://github.com/afatcoder/原创 2019-08-27 17:34:26 · 157 阅读 · 0 评论 -
Linux之ssh:ssh secure shell client工具的简介、安装、使用方法之详细攻略
Linux之ssh:ssh secure shell client工具的简介、安装、使用方法之详细攻略目录ssh secure shell client工具的简介ssh secure shell client工具的安装ssh secure shell client工具的使用方法ssh secure shell client工具的简介SSH Secure Shell Client 通常是一个全功能的SSH客户端,它允许您通过SSH协议安全地远程连接到其他计算机(通常是服务器)。原创 2019-06-11 10:46:17 · 125 阅读 · 0 评论 -
DL之IDE:深度学习环境安装之Cuda(并行计算和编程)、 Cudnn(加速深度学习任务)和NCCL(GPU系统的高性能通信库/多卡数据并行的通信)的联系和区别
DL之IDE:深度学习环境安装之Cuda(并行计算和编程)、 Cudnn(加速深度学习任务)和NCCL(GPU系统的高性能通信库/多卡数据并行的通信)的联系和区别目录Cuda(并行计算和编程)、 Cudnn(加速深度学习任务)和NCCL(GPU系统的高性能通信库/多卡数据并行的通信)的联系和区别Cuda:并行计算和编程=大规模并行+高性能计算+GPU计算的编程接口+各种GPU计算任务Cudnn:加速深度学习任务=并行计算+一系列高性能库函数+专注于神经网络领域(尤其是CNN)NC原创 2019-05-23 15:23:28 · 117 阅读 · 0 评论 -
ML之VC维:VC维(Vapnik-Chervonenkis Dimension)理论的概述(衡量模型复杂度和预测能力的指标)的简介、案例理解之详细攻略
ML之VC维:VC维(Vapnik-Chervonenkis Dimension)理论的概述(衡量模型复杂度和预测能力的指标)的简介、案例理解之详细攻略目录VC维(Vapnik-Chervonenkis Dimension)理论的简介VC维(Vapnik-Chervonenkis Dimension)理论的概述(衡量模型复杂度和预测能力的指标,但VC维理论目前已被边缘化)案例理解如何计算VC维的大小VC维(Vapnik-Chervonenkis Dimension原创 2018-03-28 17:38:51 · 11931 阅读 · 1 评论 -
Algorithm:【算法进阶之路】之算法面试刷题集合—斐波那契数列的简介、常用的解决算法、代码实现、exe程序应用(斐波纳契时钟设计)之详细攻略
Algorithm:【算法进阶之路】之算法面试刷题集合—斐波那契数列的简介、常用的解决算法、代码实现、exe程序应用(斐波纳契时钟设计)之详细攻略目录斐波那契数列的简介斐波那契数列代码实现exe程序应用(斐波纳契时钟设计)斐波那契数列的简介1、斐波那契数列的概述—前2数之和、增速非常快:黄金分割、植物叶子/果实数量背景 斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci原创 2018-06-13 17:19:14 · 11525 阅读 · 0 评论 -
Office之Word:WPS软件中Word使用技巧之论文中批量修改类标题内容(比如表格标题、图片标题)进行批量选择→然后批量修改某个标题的文本样式的图文教程之详细攻略
Office之Word:WPS软件中Word使用技巧之论文中批量修改类标题内容(比如表格标题、图片标题)进行批量选择→然后批量修改某个标题的文本样式的图文教程之详细攻略目录WPS软件中Word使用技巧之批量修改类标题内容(比如表格标题、图片标题)进行批量选择→然后批量修改某个标题的文本样式的图文教程案例应用1、WPS软件中对Word中某些标题内容进行批量选择2、WPS软件中对Word中某些标题内容进行批量修改WPS软件中Word使用技巧之批量修改类标题内容(比如表格原创 2024-07-31 23:22:42 · 1635 阅读 · 0 评论 -
成功解决exact_match/exact_match.py. Module ‘exact_match‘ doesn‘t exist on the Hugging Face Hub either.
成功解决Couldn't find a module script at /root/lm-evaluation-harness/exact_match/exact_match.py. Module 'exact_match' doesn't exist on the Hugging Face Hub either.目录解决问题解决思路解决方法解决问题lm-eval --tasks listTraceback (most recent call last): Fi原创 2024-04-28 02:14:01 · 589 阅读 · 0 评论 -
Python编程语言学习高阶:解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比
Python编程语言学习高阶:解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比目录解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比T1、修改 sys.path:适用于简单的脚本开发和调试,灵活但不适合大规模项目T2、使用相对导入:适用于规范化的包管理和大规模项目,但需要符合包的结构要求解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比解决的是在 Python 项目中跨目录导入模块的问题。原创 2024-06-15 11:38:38 · 1923 阅读 · 0 评论 -
Py之ast:ast(静态分析工具/用于识别代码中潜在的安全问题)的简介、安装和使用方法、案例应用之详细攻略
Py之ast:ast(静态分析工具/用于识别代码中潜在的安全问题)的简介、安装和使用方法、案例应用之详细攻略目录ast的简介ast的安装和使用方法ast的案例应用ast的简介ast(Abstract Syntax Tree)库是Python标准库的一部分,它提供了一个将Python源代码编译成AST的功能,并且可以操作这个AST。AST是源代码的抽象语法结构的树状表示,它比源代码字符串更加结构化和易于分析AST是一个表示代码结构的中间形式,它比原始代码字符串更安全,因原创 2024-03-17 23:58:35 · 723 阅读 · 0 评论 -
ML之DT:基于决策树模型对iris鸢尾花数据集利用交叉验证训练并可视化的训练集和测试集的学习曲线进而判断拟合状态(过拟合/欠拟合)
ML之DT:基于决策树模型对iris鸢尾花数据集利用交叉验证训练并可视化的训练集和测试集的学习曲线进而判断拟合状态(过拟合/欠拟合)目录基于决策树模型对iris鸢尾花数据集利用交叉验证训练并可视化的训练集和测试集的学习曲线进而判断拟合状态(过拟合/欠拟合)基于决策树模型对iris鸢尾花数据集利用交叉验证训练并可视化的训练集和测试集的学习曲线进而判断拟合状态(过拟合/欠拟合)输出结果实现代码# ML之DT:基于决策树模型对iris鸢尾花数据集利用交叉验证训练并可视化的训练集原创 2023-12-02 00:06:37 · 1402 阅读 · 1 评论 -
Py:代码性能分析之使用python工具—如利用cProfile【输出每个函数的运行时间和调用次数】/line_profiler【输出每行代码的执行时间】)同时对比斐波那契数列问题的递归方法和动态规划
Py:代码性能分析之使用python工具—如利用cProfile【输出每个函数的运行时间和调用次数】/line_profiler【输出每行代码的执行时间】)同时对比斐波那契数列问题的递归方法和动态规划算法实现目录代码性能分析之使用python工具—如利用cProfile【输出每个函数的运行时间和调用次数】/line_profiler【输出每行代码的执行时间】)同时对比斐波那契数列问题的递归方法和动态规划算法实现实战代码代码性能分析之使用python工具—如利用cProfile【输出每原创 2023-11-16 01:20:54 · 1642 阅读 · 0 评论 -
IDE之Eric:Eric软件界面的简介、案例应用之详细攻略
IDE之Eric:Eric软件界面的简介、案例应用之详细攻略目录1、Eric软件界面的简介1.1、菜单栏和左边栏Comment注释Ctrl+M:对多行注释菜单栏FileFile:使用方法Edit:使用方法View:使用方法Start:Debug:Unittest:MultiprojectProject:使用方法Extras:使用方法SettingSetting:使用方法Window:使用方法Bookmarks:使用方法原创 2022-09-14 20:44:46 · 1887 阅读 · 0 评论 -
Dataset:titanic泰坦尼克号数据集/泰坦尼克数据集(是否获救二分类预测)的简介、下载、案例应用之详细攻略
Dataset:titanic泰坦尼克号数据集/泰坦尼克数据集(是否获救二分类预测)的简介、下载、案例应用之详细攻略目录titanic(泰坦尼克号)数据集的简介titanic(泰坦尼克号)数据集的下载titanic(泰坦尼克号)数据集的案例应用titanic(泰坦尼克号)数据集的简介 泰坦尼克号沉船事故。1912年,当时隶属于英国的世界级豪华客轮泰坦尼克号,因在处女航行中不幸撞上北大西洋冰山而沉没。这场事故使得1500多名乘客罹难。后来,这场震惊世界的惨剧原创 2019-07-22 07:48:25 · 8686 阅读 · 1 评论 -
成功解决fatal error: stdatomic.h: No such file or directory #include <stdatomic.h>
成功解决fatal error: stdatomic.h: No such file or directory #include 目录解决问题解决思路解决方法解决问题I llama.cpp build info:I UNAME_S: LinuxI UNAME_P: x86_64I UNAME_M: x86_64I CFLAGS: -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DND原创 2023-11-06 20:28:28 · 4098 阅读 · 0 评论 -
LLMs之Medical:大语言模型纵向赋能场景—垂直行业场景应用之大模型医疗行业的简介、主流LLMs(ChatGLM-Med/ChatDoctor/Radiology-GPT/Med-PaLM/Qi
LLMs之Medical:大语言模型纵向赋能场景—垂直行业场景应用之大模型医疗行业的简介、主流LLMs(ChatGLM-Med/ChatDoctor/Radiology-GPT/Qilin-Med等)及其评估基准(包括数据集)、案例应用之详细攻略目录大模型医疗行业的简介大模型医疗行业的主流LLMs及其评估基准大模型医疗行业的案例应用—医疗应用四大方面:医学问答、医学考试、医学教育、医学助理大模型医疗行业的简介1、大模型医疗行业的概述简介大模型在医原创 2023-11-02 23:41:00 · 1695 阅读 · 0 评论 -
Py之embedchain:embedchain(加载、检索和同步任何非结构化数据并实现聊天或知识库问答)的简介、安装、使用方法之详细攻略
Py之embedchain:embedchain的简介、安装、使用方法之详细攻略目录embedchain的简介embedchain的安装embedchain的使用方法embedchain的简介 Embedchain 是一个用于 LLMs(Language Model)的数据平台,可以加载、索引、检索和同步任何非结构化数据。使用 Embedchain,您可以轻松地创建基于 LLM 的应用程序,用于处理任何数据。如果您需要 JavaScript 版本,请查看 embed原创 2023-10-18 00:51:49 · 1206 阅读 · 1 评论 -
Py之unstructured:unstructured的简介、安装、使用方法之详细攻略
Py之unstructured:unstructured的简介、安装、使用方法之详细攻略目录unstructured的简介unstructured的安装unstructured的使用方法unstructured的简介unstructured是一款开源非结构化数据的预处理工具。非结构化库旨在简化和优化结构化和非结构化文档的预处理,以便进行下游任务。这意味着无论您的数据位于何处,无论数据采用何种格式,非结构化工具包都将转换和预处理数据,使其变成易于理解和使用的格式。uns原创 2023-10-20 23:36:42 · 3934 阅读 · 1 评论 -
LLMs之BELLE:源码解读(ppo_train.py文件)训练一个基于强化学习的自动对话生成模型—解析命令行参数→加载数据集(datasets库)→初始化模型分词器和PPOConfig配置参数(t
LLMs之BELLE:源码解读(ppo_train.py文件)训练一个基于强化学习的自动对话生成模型—解析命令行参数→加载数据集(datasets库)→初始化模型分词器和PPOConfig配置参数(trl库)→模型训练(accelerate分布式训练+DeepSpeed推理加速,生成对话→计算奖励【评估生成质量】→执行PPO算法更新【改善生成文本的质量】)→模型保存之详细攻略目录源码解读(ppo_train.py文件)训练一个基于强化学习的自动对话生成模型—解析命令行参数→加载数据集(datas原创 2023-10-16 23:43:56 · 1599 阅读 · 0 评论 -
LLMs之BELLE:源码解读(dpo_train.py文件)训练一个基于强化学习的自动对话生成模型(DPO算法微调预训练语言模型)—解析命令行参数与初始化→加载数据集(json格式)→模型训练与评估
LLMs之BELLE:源码解读(dpo_train.py文件)训练一个基于强化学习的自动对话生成模型(DPO算法微调预训练语言模型)—解析命令行参数与初始化→加载数据集(json格式)→模型训练与评估之详细攻略目录源码解读(dpo_train.py文件)训练一个基于强化学习的自动对话生成模型(DPO算法微调预训练语言模型)—解析命令行参数与初始化→加载数据集(json格式)→模型训练与评估# 0、获取环境变量(分布式训练中的进程数量)# 1、解析命令行参数与初始化# 2原创 2023-10-16 23:44:53 · 1634 阅读 · 0 评论 -
Tool之:Jmeter(一款开源压力测试工具)的简介、安装、使用方法之详细攻略
Tool之:Jmeter(一款开源压力测试工具)的简介、安装、使用方法之详细攻略目录Jmeter(一款开源压力测试工具)的简介、安装、使用方法Jmeter的安装Jmeter的使用方法Jmeter(一款开源压力测试工具)的简介、安装、使用方法JMeter是一款由Apache公司基于Java开发的开源压力测试工具。它具有小巧的体积、丰富的功能集,以及简便的使用方式,因此被视为一款相对轻量级的测试工具。不过,由于JMeter是基于Java开发的,因此在运行之前必须先安装Jav原创 2019-10-25 14:58:27 · 1083 阅读 · 1 评论 -
Algorithm:【算法进阶之路】之算法面试刷题集合—树结构算法—利用pygraphviz库绘制二叉树图结构实现代码
Algorithm:【算法进阶之路】之算法面试刷题集合—树结构算法—利用pygraphviz库绘制二叉树图结构实现代码目录树结构(二叉树/多路查找树/字典树)之利用pygraphviz库绘制二叉树图结构实现代码树结构(二叉树/多路查找树/字典树)之利用pygraphviz库绘制二叉树图结构实现代码实现代码# Algorithm:树结构(二叉树/多路查找树/字典树)之利用pygraphviz库绘制二叉树图结构实现代码import pygraphviz as pgvfrom PIL原创 2018-10-19 20:08:50 · 13488 阅读 · 1 评论 -
LLMs之InternLM-20B:源码解读(train.py文件)—初始化配置→数据预处理(txt/json/jsonl等需转换为bin/meta文件再入模)→模型训练(批处理加载+内存分析+支持在
LLMs之InternLM-20B:源码解读(train.py文件)—初始化配置→数据预处理(txt/json/jsonl等需转换为bin/meta文件再入模)→模型训练(批处理加载+内存分析+支持在特定步数进行验证评估+TensorBoard可视化监控+支持分布式训练【多机多卡训练同步更新】)+模型评估(ACC+PPL)+性能监控(日志记录+性能分析+内存监控等)目录源码解读(train.py文件)# Step1、解析命令行参数# Step2、初始化分布式环境# Step3、初始化原创 2023-09-24 23:18:54 · 1227 阅读 · 0 评论 -
Paper:txyz_ai(一款帮助科研人员阅读PDF论文ChatGPT利器)的简介、安装、使用方法之详细攻略
Paper:txyz_ai(一款帮助科研人员阅读PDF论文ChatGPT利器)的简介、安装、使用方法之详细攻略目录txyz.ai的简介txyz.ai的安装txyz.ai的使用方法txyz.ai的简介 txyz.ai一款帮助科学研究人员阅读PDF论文的plug-in—ChatGPT利器。官网:TXYZ - Chat With Knowledgetxyz.ai的安装1、Web端plug-in安装步骤图文教程第一步,打开 ChatGPT ,选择 GPT原创 2023-08-29 22:15:00 · 13223 阅读 · 0 评论 -
Python:编程技巧经验积累之利用try/except捕获Error来实现程序继续运行(以一种用户友好的方式提供反馈)
Python:编程技巧经验积累之利用try/except捕获Error来实现程序继续运行(以一种用户友好的方式提供反馈)目录Python编程技巧Python编程技巧1、利用try/except捕获Error来实现程序继续运行(以一种用户友好的方式提供反馈)利用try/except捕获了OSError,然后检查错误消息,如果是关于模型不存在的错误,则打印一个友好的 mensaje。这是一种包装系统错误的好方法,我们允许程序继续运行,但以一种用户友好的方式提供反馈。try:原创 2023-07-07 15:10:31 · 1040 阅读 · 0 评论 -
DS-AD:数据科学与敏捷开发(Agile Development)的关系简介、常用方法(Scrum中的回顾会议/DAC设计思想/TDD开发思想)、实战总结之详细攻略
DS-AD:数据科学与敏捷开发(Agile Development)的关系简介、常用方法(Scrum中的回顾会议/DAC设计思想/TDD开发思想)、实战总结之详细攻略目录数据科学与敏捷开发(Agile Development)的关系简介数据科学与敏捷开发的常用方法(Scrum中的回顾会议/DAC设计思想/TDD开发思想)数据科学与敏捷开发(Agile Development)的关系简介1、敏捷开发和数据科学能否很好地结合在一起?简介敏捷不仅仅为软件开发人员保留。虽然这些有原创 2023-05-08 23:50:08 · 964 阅读 · 0 评论 -
Dataset之NLP之LLMs:大模型核心技术—大语言模型LLMs相关开源数据集的简介(三类数据集【预训练数据/微调数据/测试数据】)、下载(国内外开源数据集平台总结)、使用方法之详细攻略
Dataset之NLP之LLMs:大模型核心技术—大语言模型LLMs相关开源数据集的简介(三类数据集【预训练数据/微调数据/测试数据】)、下载(国内外开源数据集平台总结)、使用方法之详细攻略目录相关文章LLMs相关开源数据集的简介LLMs相关开源数据集的下载LLMs相关开源数据集的使用方法相关文章LLMs:《A Survey of Large Language Models大语言模型综述》的翻译与解读(一原创 2023-08-27 23:06:11 · 1889 阅读 · 0 评论 -
DB之VDB:向量数据库(Vector Database)的简介、常用库(Chroma/FAISS/Elasticsearch/Milvus/LanceDB/PGVector等)、使用方法之详细攻略
DB之VDB:向量数据库(Vector Database)的简介、常用库(FAISS/Chroma等)、使用方法之详细攻略目录向量数据库的简介向量数据库的常用库向量数据库的使用方法向量数据库的简介 向量数据库是专门用来存储和查询向量的数据库,其存储的向量来自于对文本、语音、图像、视频等的向量化。与传统数据库相比,向量数据库可以处理更多非结构化数据(比如图像和音频)。在机器学习和深度学习中,数据通常以向量形式表示。 向量原创 2023-02-18 23:24:13 · 2556 阅读 · 0 评论 -
Algorithm:【算法进阶之路】之算法面试刷题集合—数据结构知识和算法刷题及其平台、问题为导向的十大类刷题算法(数组和字符串、链表、栈和队列、二叉树、堆、图、哈希表、排序和搜索、回溯算法、枚举/递
Algorithm:【算法进阶之路】之算法面试刷题集合—数据结构知识和算法刷题及其平台、问题为导向的十大类刷题算法(数组和字符串、链表、栈和队列、二叉树、堆、图、哈希表、排序和搜索、回溯算法、枚举/递归/分治/动态规划/贪心算法)总结目录相关文章数据结构的最强学习路线之问题为导向的十大类刷题算法总结一、学习相关的讲解与刷题平台二、刷题集合三、常见的十大类考试题型相关文章DSt:数据结构的简介、最强学习路线(逻辑结构【数组原创 2023-04-22 23:36:17 · 1391 阅读 · 0 评论 -
Py之thulac:THULAC的简介、安装、使用方法之详细攻略
Py之thulac:THULAC的简介、安装、使用方法之详细攻略目录THULAC的简介THULAC的安装THULAC的使用方法THULAC的简介THULAC(THU Lexical Analyzer for Chinese)由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词法分析工具包,具有中文分词和词性标注功能。THULAC具有如下几个特点:>> 能力强。利用我们集成的目前世界上规模最大的人工分词和词性标注中文语料库(约含5800万字)训原创 2019-10-23 09:56:22 · 1689 阅读 · 1 评论 -
LLMs:Tokenizer Viwer的简介(输入【一字符串段文本】→输出【各个字词的整数编码列表】,比如bert-base-chinese/falcon-7b/GanymedeNil/text2v
LLMs:Tokenizer Viwer的简介(输入【一字符串段文本】→输出【各个字词的整数编码列表】)、安装、使用方法之详细攻略目录Tokenizer Viwer的简介Tokenizer Viwer的安装Tokenizer Viwer的使用方法Tokenizer Viwer的简介Tokenizer Viwer 是一款方便快速预览 tokenizer 的工具。GitHub地址:transformers_tasks/tools/tokenizer_viewer原创 2023-06-28 00:58:48 · 1031 阅读 · 0 评论 -
Interview:算法岗位面试—BAT公司问题面试之计算机基础—字节byte和字符character/三大编码规范、进程与线程的区别、经典概率问题等集合总结
Interview:算法岗位面试—BAT公司问题面试之计算机基础—字节byte和字符character/三大编码规范、进程与线程的区别、经典概率问题等集合总结目录计算机基础问题概率问题计算机基础问题1、字节byte和字符character的联系和区别字节byte—计量单位字符character—语言单位简介字节byte:计算机存储和传输信息的最小单位,表示数据量多少。数据存储是以“字节”(Byte)为单位,数据传输大多是以“位”(bit,又名“比特”)为单位,原创 2018-10-19 22:39:43 · 10953 阅读 · 0 评论 -
AI之HardWare:人工智能领域之大模型部署两大设计方案(本地搭建服务器+调用云厂商服务)、服务器和硬件相关技术的简介(GPU/TPU/NPU,GeForce【3090-4090】、Tesla【A
AI:人工智能领域之大模型部署两大设计方案(本地搭建服务器+调用云厂商服务)、服务器和硬件相关技术的简介(GPU/TPU、GeForce【3090-4090】/Tesla【A800-A100/V100】)、服务器搭建(GPU集群、节点、GPU卡/显卡)之详细攻略目录一、服务器和硬件相关技术的简介二、本地搭建服务器硬件案例三、调用云厂商服务一、服务器和硬件相关技术的简介0、查看系统的CPU和GPU的运行内存A1、基于Win原创 2023-06-10 02:51:28 · 2048 阅读 · 0 评论 -
Python:一行代码(利用apply函数)实现对pandas.dataframe某一列所有数据执行某一函数功能、当某列所有数据中50%的分位数为负数的时候符号取反
Python:一行代码(利用apply函数)实现对pandas.dataframe某一列所有数据执行某一函数功能、当某列所有数据中50%的分位数为负数的时候符号取反。原创 2023-06-17 01:38:24 · 1094 阅读 · 0 评论 -
Python编程语言学习:利用编程语言实现与文件路径相关的应用实战案例集合(输出当前路径下的所有文件名、输出根目录下所有子文件夹的绝对路径/相对路径)代码实现
Python编程语言学习:利用编程语言实现与文件路径相关的应用实战案例集合(输出当前路径下的所有文件名、输出根目录下所有子文件夹的绝对路径/相对路径)代码实现'目录利用编程语言实现与文件路径相关的应用实战案例集合利用编程语言实现与文件路径相关的应用实战案例集合1、for循环输出当前路径下的所有文件名# for循环输出当前路径下的所有文件名import os# 获取当前文件夹路径dir_path = os.getcwd()# 遍历当前文件夹下的所有文件并输出文件名称fo原创 2021-03-20 23:44:07 · 1031 阅读 · 0 评论 -
RL之Q-learning:基于交易金额历史数据利用强化学习算法采用两种方法(自定义Q-learning算法和基于gym库)实现欺诈检测之详细攻略
RL之Q-learning:基于交易金额历史数据利用强化学习算法采用两种方法(自定义Q-learning算法和基于gym库)实现欺诈检测之详细攻略目录基于交易金额历史数据利用强化学习算法采用两种方法(自定义Q-learning算法和基于gym库)实现欺诈检测基于交易金额历史数据利用强化学习算法采用两种方法(自定义Q-learning算法和基于gym库)实现欺诈检测# T1、自定义Q-learning算法对交易数据集进行训练,并进行模型推理# 1、定义数据集# 定义信用卡欺诈数据集原创 2018-06-25 20:18:28 · 851 阅读 · 0 评论 -
NLP之FE:自然语言处理技术之数据预处理—利用多种方法将文本类型的parquet文件另存为csv文件实现代码
NLP之FE:自然语言处理技术之数据预处理—利用多种方法将文本类型的parquet文件另存为csv文件实现代码目录利用多种方法将文本类型的parquet文件另存为csv文件利用多种方法将文本类型的parquet文件另存为csv文件T1、利用pandas将parquet文件另存为csv文件# NLP之FE:自然语言处理技术之数据预处理——利用多种方法将文本类型的parquet文件另存为csv文件parquet_file = "E:/File_Python/Resource/data原创 2018-07-30 10:19:25 · 918 阅读 · 0 评论