
成长书屋
文章平均质量分 75
本专栏收集了博主的主要精华文章,经验精帖文章,非常具有参考价值。
优惠券已抵扣
余额抵扣
还需支付
¥39.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
一个处女座的程序猿
2025年初博主2本新书(机器学习耗时5年/大模型耗时3年)即将开售!人工智能硕学历,拥有十多项发专利(6项)和软著(9项),包括国际期刊SCI内多篇论文,多个国家级证书(2个国三级、3个国四级),曾获国内外“人工智能算法”竞赛(包括国家级省市级等,一等奖5项、二等奖4项、三等奖2项)证书十多项,以上均第一作者身份,并拥有省市校级个人荣誉证书十多项。目前也是国内知名博主,连续3年获CSDN十大博客之星,荣获达摩院评测官、阿里社区/CSDN/华为社区等十多个开发者社区专家博主荣誉,曾受邀阿里/华为/谷歌等社区采访-评审-论坛几十次。截止2022年,AI领域粉丝超100万,文章阅读量超5000万
展开
-
DayDayUp:理性系列—提升效率和思维认知的五类工具(七W/SWOT/PDCA/KISS/3W等)—分析决策与规划类、复盘与总结类、思维与创新类、时间管理与效率提升类、沟通与协作类
七问分析法分析What(是什么)、How(怎么做)、Why(为什么)、When(何时)、Where(在哪里)、Who(谁)、How Much(多少)七个关键问题。全面分析问题,厘清任务细节,制定清晰的解决方案,确保决策和执行的全面性。SWOT竞争分析法S(strengths)优势、W(weaknesses)劣势、O(opportunities)机会、T(threatens)威胁用于分析内外部环境,制定战略决策,明确优劣势,抓住机遇,规避风险PDCA循环法。原创 2025-01-24 22:00:00 · 1250 阅读 · 0 评论 -
LLMs之NPU之Ascend之PyTorch:基于华为昇腾NPU设备实现PyTorch模型迁移和训练之单机多卡+混合精度训练手动迁移—导入支持库、参数配置、设备映射、进程管理、模型迁移、数据加载
LLMs之NPU之Ascend之PyTorch:基于华为昇腾NPU设备实现PyTorch模型迁移和训练之单机多卡+混合精度训练手动迁移—导入支持库、参数配置、设备映射、进程管理、模型迁移、数据加载、训练过程等多方面调整目录大模型软硬配置—对比英伟达GPU和华为NPU—适配方案细节基于华为昇腾NPU设备实现PyTorch模型迁移和训练之单机多卡+混合精度训练手动迁移—导入支持库、参数配置、设备映射、进程管理、模型迁移、数据加载、训练过程等多方面调整大模型软硬配置—对比英伟达GPU和华为原创 2024-11-12 21:37:50 · 1400 阅读 · 0 评论 -
Office之Word:WPS软件中Word使用技巧之论文中批量修改类标题内容(比如表格标题、图片标题)进行批量选择→然后批量修改某个标题的文本样式的图文教程之详细攻略
Office之Word:WPS软件中Word使用技巧之论文中批量修改类标题内容(比如表格标题、图片标题)进行批量选择→然后批量修改某个标题的文本样式的图文教程之详细攻略目录WPS软件中Word使用技巧之批量修改类标题内容(比如表格标题、图片标题)进行批量选择→然后批量修改某个标题的文本样式的图文教程案例应用1、WPS软件中对Word中某些标题内容进行批量选择2、WPS软件中对Word中某些标题内容进行批量修改WPS软件中Word使用技巧之批量修改类标题内容(比如表格原创 2024-07-31 23:22:42 · 1710 阅读 · 0 评论 -
Python编程语言学习高阶:解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比
Python编程语言学习高阶:解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比目录解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比T1、修改 sys.path:适用于简单的脚本开发和调试,灵活但不适合大规模项目T2、使用相对导入:适用于规范化的包管理和大规模项目,但需要符合包的结构要求解决在 Python 项目中跨目录导入模块的问题的多种方法教程实战及其优劣对比解决的是在 Python 项目中跨目录导入模块的问题。原创 2024-06-15 11:38:38 · 1927 阅读 · 0 评论 -
成功解决exact_match/exact_match.py. Module ‘exact_match‘ doesn‘t exist on the Hugging Face Hub either.
成功解决Couldn't find a module script at /root/lm-evaluation-harness/exact_match/exact_match.py. Module 'exact_match' doesn't exist on the Hugging Face Hub either.目录解决问题解决思路解决方法解决问题lm-eval --tasks listTraceback (most recent call last): Fi原创 2024-04-28 02:14:01 · 622 阅读 · 0 评论 -
LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3
LLMs之Llama3:基于colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5倍~30+减少50%的内存占用】)对llama-3-8b-Instruct-bnb-4bit模型采用alpaca数据集实现CLI方式/GUI傻瓜可视化方式进行LoRA指令微调→模型推理测试→CLI方式合并权重目录基于colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5倍~30+减少5原创 2024-04-24 01:54:43 · 2101 阅读 · 0 评论 -
Py之ast:ast(静态分析工具/用于识别代码中潜在的安全问题)的简介、安装和使用方法、案例应用之详细攻略
Py之ast:ast(静态分析工具/用于识别代码中潜在的安全问题)的简介、安装和使用方法、案例应用之详细攻略目录ast的简介ast的安装和使用方法ast的案例应用ast的简介ast(Abstract Syntax Tree)库是Python标准库的一部分,它提供了一个将Python源代码编译成AST的功能,并且可以操作这个AST。AST是源代码的抽象语法结构的树状表示,它比源代码字符串更加结构化和易于分析AST是一个表示代码结构的中间形式,它比原始代码字符串更安全,因原创 2024-03-17 23:58:35 · 743 阅读 · 0 评论 -
ML之DT:基于决策树模型对iris鸢尾花数据集利用交叉验证训练并可视化的训练集和测试集的学习曲线进而判断拟合状态(过拟合/欠拟合)
ML之DT:基于决策树模型对iris鸢尾花数据集利用交叉验证训练并可视化的训练集和测试集的学习曲线进而判断拟合状态(过拟合/欠拟合)目录基于决策树模型对iris鸢尾花数据集利用交叉验证训练并可视化的训练集和测试集的学习曲线进而判断拟合状态(过拟合/欠拟合)基于决策树模型对iris鸢尾花数据集利用交叉验证训练并可视化的训练集和测试集的学习曲线进而判断拟合状态(过拟合/欠拟合)输出结果实现代码# ML之DT:基于决策树模型对iris鸢尾花数据集利用交叉验证训练并可视化的训练集原创 2023-12-02 00:06:37 · 1408 阅读 · 1 评论 -
Py:代码性能分析之使用python工具—如利用cProfile【输出每个函数的运行时间和调用次数】/line_profiler【输出每行代码的执行时间】)同时对比斐波那契数列问题的递归方法和动态规划
Py:代码性能分析之使用python工具—如利用cProfile【输出每个函数的运行时间和调用次数】/line_profiler【输出每行代码的执行时间】)同时对比斐波那契数列问题的递归方法和动态规划算法实现目录代码性能分析之使用python工具—如利用cProfile【输出每个函数的运行时间和调用次数】/line_profiler【输出每行代码的执行时间】)同时对比斐波那契数列问题的递归方法和动态规划算法实现实战代码代码性能分析之使用python工具—如利用cProfile【输出每原创 2023-11-16 01:20:54 · 1646 阅读 · 0 评论 -
成功解决fatal error: stdatomic.h: No such file or directory #include <stdatomic.h>
成功解决fatal error: stdatomic.h: No such file or directory #include 目录解决问题解决思路解决方法解决问题I llama.cpp build info:I UNAME_S: LinuxI UNAME_P: x86_64I UNAME_M: x86_64I CFLAGS: -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DND原创 2023-11-06 20:28:28 · 4145 阅读 · 0 评论 -
LLMs之Medical:大语言模型纵向赋能场景—垂直行业场景应用之大模型医疗行业的简介、主流LLMs(ChatGLM-Med/ChatDoctor/Radiology-GPT/Med-PaLM/Qi
LLMs之Medical:大语言模型纵向赋能场景—垂直行业场景应用之大模型医疗行业的简介、主流LLMs(ChatGLM-Med/ChatDoctor/Radiology-GPT/Qilin-Med等)及其评估基准(包括数据集)、案例应用之详细攻略目录大模型医疗行业的简介大模型医疗行业的主流LLMs及其评估基准大模型医疗行业的案例应用—医疗应用四大方面:医学问答、医学考试、医学教育、医学助理大模型医疗行业的简介1、大模型医疗行业的概述简介大模型在医原创 2023-11-02 23:41:00 · 1701 阅读 · 0 评论 -
Py之unstructured:unstructured的简介、安装、使用方法之详细攻略
Py之unstructured:unstructured的简介、安装、使用方法之详细攻略目录unstructured的简介unstructured的安装unstructured的使用方法unstructured的简介unstructured是一款开源非结构化数据的预处理工具。非结构化库旨在简化和优化结构化和非结构化文档的预处理,以便进行下游任务。这意味着无论您的数据位于何处,无论数据采用何种格式,非结构化工具包都将转换和预处理数据,使其变成易于理解和使用的格式。uns原创 2023-10-20 23:36:42 · 3997 阅读 · 1 评论 -
Py之embedchain:embedchain(加载、检索和同步任何非结构化数据并实现聊天或知识库问答)的简介、安装、使用方法之详细攻略
Py之embedchain:embedchain的简介、安装、使用方法之详细攻略目录embedchain的简介embedchain的安装embedchain的使用方法embedchain的简介 Embedchain 是一个用于 LLMs(Language Model)的数据平台,可以加载、索引、检索和同步任何非结构化数据。使用 Embedchain,您可以轻松地创建基于 LLM 的应用程序,用于处理任何数据。如果您需要 JavaScript 版本,请查看 embed原创 2023-10-18 00:51:49 · 1211 阅读 · 1 评论 -
LLMs之BELLE:源码解读(dpo_train.py文件)训练一个基于强化学习的自动对话生成模型(DPO算法微调预训练语言模型)—解析命令行参数与初始化→加载数据集(json格式)→模型训练与评估
LLMs之BELLE:源码解读(dpo_train.py文件)训练一个基于强化学习的自动对话生成模型(DPO算法微调预训练语言模型)—解析命令行参数与初始化→加载数据集(json格式)→模型训练与评估之详细攻略目录源码解读(dpo_train.py文件)训练一个基于强化学习的自动对话生成模型(DPO算法微调预训练语言模型)—解析命令行参数与初始化→加载数据集(json格式)→模型训练与评估# 0、获取环境变量(分布式训练中的进程数量)# 1、解析命令行参数与初始化# 2原创 2023-10-16 23:44:53 · 1648 阅读 · 0 评论 -
LLMs之BELLE:源码解读(ppo_train.py文件)训练一个基于强化学习的自动对话生成模型—解析命令行参数→加载数据集(datasets库)→初始化模型分词器和PPOConfig配置参数(t
LLMs之BELLE:源码解读(ppo_train.py文件)训练一个基于强化学习的自动对话生成模型—解析命令行参数→加载数据集(datasets库)→初始化模型分词器和PPOConfig配置参数(trl库)→模型训练(accelerate分布式训练+DeepSpeed推理加速,生成对话→计算奖励【评估生成质量】→执行PPO算法更新【改善生成文本的质量】)→模型保存之详细攻略目录源码解读(ppo_train.py文件)训练一个基于强化学习的自动对话生成模型—解析命令行参数→加载数据集(datas原创 2023-10-16 23:43:56 · 1606 阅读 · 0 评论 -
LLMs之InternLM-20B:源码解读(train.py文件)—初始化配置→数据预处理(txt/json/jsonl等需转换为bin/meta文件再入模)→模型训练(批处理加载+内存分析+支持在
LLMs之InternLM-20B:源码解读(train.py文件)—初始化配置→数据预处理(txt/json/jsonl等需转换为bin/meta文件再入模)→模型训练(批处理加载+内存分析+支持在特定步数进行验证评估+TensorBoard可视化监控+支持分布式训练【多机多卡训练同步更新】)+模型评估(ACC+PPL)+性能监控(日志记录+性能分析+内存监控等)目录源码解读(train.py文件)# Step1、解析命令行参数# Step2、初始化分布式环境# Step3、初始化原创 2023-09-24 23:18:54 · 1230 阅读 · 0 评论 -
Paper:txyz_ai(一款帮助科研人员阅读PDF论文ChatGPT利器)的简介、安装、使用方法之详细攻略
Paper:txyz_ai(一款帮助科研人员阅读PDF论文ChatGPT利器)的简介、安装、使用方法之详细攻略目录txyz.ai的简介txyz.ai的安装txyz.ai的使用方法txyz.ai的简介 txyz.ai一款帮助科学研究人员阅读PDF论文的plug-in—ChatGPT利器。官网:TXYZ - Chat With Knowledgetxyz.ai的安装1、Web端plug-in安装步骤图文教程第一步,打开 ChatGPT ,选择 GPT原创 2023-08-29 22:15:00 · 13253 阅读 · 0 评论 -
Dataset之NLP之LLMs:大模型核心技术—大语言模型LLMs相关开源数据集的简介(三类数据集【预训练数据/微调数据/测试数据】)、下载(国内外开源数据集平台总结)、使用方法之详细攻略
Dataset之NLP之LLMs:大模型核心技术—大语言模型LLMs相关开源数据集的简介(三类数据集【预训练数据/微调数据/测试数据】)、下载(国内外开源数据集平台总结)、使用方法之详细攻略目录相关文章LLMs相关开源数据集的简介LLMs相关开源数据集的下载LLMs相关开源数据集的使用方法相关文章LLMs:《A Survey of Large Language Models大语言模型综述》的翻译与解读(一原创 2023-08-27 23:06:11 · 1903 阅读 · 0 评论 -
Python:编程技巧经验积累之利用try/except捕获Error来实现程序继续运行(以一种用户友好的方式提供反馈)
Python:编程技巧经验积累之利用try/except捕获Error来实现程序继续运行(以一种用户友好的方式提供反馈)目录Python编程技巧Python编程技巧1、利用try/except捕获Error来实现程序继续运行(以一种用户友好的方式提供反馈)利用try/except捕获了OSError,然后检查错误消息,如果是关于模型不存在的错误,则打印一个友好的 mensaje。这是一种包装系统错误的好方法,我们允许程序继续运行,但以一种用户友好的方式提供反馈。try:原创 2023-07-07 15:10:31 · 1049 阅读 · 0 评论 -
LLMs:Tokenizer Viwer的简介(输入【一字符串段文本】→输出【各个字词的整数编码列表】,比如bert-base-chinese/falcon-7b/GanymedeNil/text2v
LLMs:Tokenizer Viwer的简介(输入【一字符串段文本】→输出【各个字词的整数编码列表】)、安装、使用方法之详细攻略目录Tokenizer Viwer的简介Tokenizer Viwer的安装Tokenizer Viwer的使用方法Tokenizer Viwer的简介Tokenizer Viwer 是一款方便快速预览 tokenizer 的工具。GitHub地址:transformers_tasks/tools/tokenizer_viewer原创 2023-06-28 00:58:48 · 1033 阅读 · 0 评论 -
Python:一行代码(利用apply函数)实现对pandas.dataframe某一列所有数据执行某一函数功能、当某列所有数据中50%的分位数为负数的时候符号取反
Python:一行代码(利用apply函数)实现对pandas.dataframe某一列所有数据执行某一函数功能、当某列所有数据中50%的分位数为负数的时候符号取反。原创 2023-06-17 01:38:24 · 1102 阅读 · 0 评论 -
Linux之MobaXterm:MobaXterm工具的简介、安装、使用方法(连接Linux服务器以及常规命令操作教程)之详细攻略
Linux之MobaXterm:MobaXterm工具的简介、安装、使用方法(连接Linux服务器以及常规命令操作教程)之详细攻略目录MobaXterm工具的简介MobaXterm工具的安装MobaXterm工具的使用方法MobaXterm工具的简介MobaXterm是一款功能强大的远程计算工具,它提供了一系列的功能和特点,使得远程计算和管理变得更加便捷和高效。MobaXterm是一款全功能的远程计算工具,适用于Windows系统。它集成了多种远程计算工具和原创 2023-06-15 22:13:55 · 3417 阅读 · 0 评论 -
AI之HardWare:人工智能领域之大模型部署两大设计方案(本地搭建服务器+调用云厂商服务)、服务器和硬件相关技术的简介(GPU/TPU/NPU,GeForce【3090-4090】、Tesla【A
AI:人工智能领域之大模型部署两大设计方案(本地搭建服务器+调用云厂商服务)、服务器和硬件相关技术的简介(GPU/TPU、GeForce【3090-4090】/Tesla【A800-A100/V100】)、服务器搭建(GPU集群、节点、GPU卡/显卡)之详细攻略目录一、服务器和硬件相关技术的简介二、本地搭建服务器硬件案例三、调用云厂商服务一、服务器和硬件相关技术的简介0、查看系统的CPU和GPU的运行内存A1、基于Win原创 2023-06-10 02:51:28 · 2149 阅读 · 0 评论 -
ML之FE:基于自定义数据集进行对比标准化处理和归一化处理、自定义标签编码(二类编码和三类编码)、自动标签编码实现代码
ML之FE:基于自定义数据集进行对比标准化处理和归一化处理、自定义标签编码(二类编码和三类编码)、自动标签编码实现代码目录基于自定义数据集进行对比标准化处理和归一化处理、自定义标签编码(二类编码和三类编码)、自动标签编码基于自定义数据集进行对比标准化处理和归一化处理、自定义标签编码(二类编码和三类编码)、自动标签编码实现代码# encoding: utf-8import pandas as pdimport numpy as npnp.random.seed(123)im原创 2023-05-15 21:38:47 · 859 阅读 · 0 评论 -
ML之FE:利用pandas库衡量两个特征间的各种关系指标集合(Pearson相关系数(仅线性相关)、kendall相关系数、Spearman秩相关系数)实现代码
ML之FE:利用pandas库衡量两个特征间的各种关系指标集合(Pearson相关系数(仅线性相关)、kendall相关系数、Spearman秩相关系数)实现代码目录利用pandas库衡量两个特征间的各种关系指标集合(Pearson相关系数(仅线性相关)、kendall相关系数、Spearman秩相关系数)利用pandas库衡量两个特征间的各种关系指标集合(Pearson相关系数(仅线性相关)、kendall相关系数、Spearman秩相关系数)实现代码# ML之FE:利用panda原创 2023-05-15 21:38:33 · 909 阅读 · 0 评论 -
Linux之Shell:Shell/Shell脚本(sh)的简介、使用方法、案例应用之详细攻略
Linux之Shell:Shell/Shell脚本(sh)的简介、使用方法、案例应用之详细攻略目录相关文章Shell/Shell脚本的简介Shell脚本的使用方法Shell脚本的案例应用相关文章Windows之Batch:Batch批处理脚本(bat/cmd)的简介、使用方法、案例应用之详细攻略https://yunyaniu.blog.csdn.net/article/details/81735982Linux:Linux系统的简介、基础知识、最强原创 2023-05-13 02:09:04 · 1048 阅读 · 0 评论 -
ML:PAC(Probably Approximately Correct可能近似正确)学习框架的简介、使用方法之详细攻略
ML:PAC(Probably Approximately Correct可能近似正确)学习框架的简介、使用方法之详细攻略目录PAC学习框架的简介PAC(Probably Approximately Correct可能近似正确)学习框架的概述PAC学习框架的简介PAC(Probably Approximately Correct可能近似正确)学习框架的概述简介PAC(Probably Approximately Correct)学习是一个学习框架,用于分析学习原创 2023-05-08 23:55:37 · 990 阅读 · 0 评论 -
DS-AD:数据科学与敏捷开发(Agile Development)的关系简介、常用方法(Scrum中的回顾会议/DAC设计思想/TDD开发思想)、实战总结之详细攻略
DS-AD:数据科学与敏捷开发(Agile Development)的关系简介、常用方法(Scrum中的回顾会议/DAC设计思想/TDD开发思想)、实战总结之详细攻略目录数据科学与敏捷开发(Agile Development)的关系简介数据科学与敏捷开发的常用方法(Scrum中的回顾会议/DAC设计思想/TDD开发思想)数据科学与敏捷开发(Agile Development)的关系简介1、敏捷开发和数据科学能否很好地结合在一起?简介敏捷不仅仅为软件开发人员保留。虽然这些有原创 2023-05-08 23:50:08 · 967 阅读 · 0 评论 -
Py之hmmlearn:hmmlearn隐马尔可夫模型的简介、安装、使用方法之详细攻略
Py之hmmlearn:hmmlearn隐马尔可夫模型的简介、安装、使用方法之详细攻略目录hmmlearn的简介hmmlearn的安装hmmlearn的使用方法hmmlearn的简介 hmmlearn是一个基于Python的开源库,用于实现隐马尔可夫模型(Hidden Markov Model,HMM)和其他相关模型的训练和推断。hmmlearn提供了简单易用的API,支持多种HMM变体,包括高斯混合模型(Gaussian Mixture Model,GMM原创 2023-05-08 23:49:43 · 1531 阅读 · 0 评论 -
DS:懒惰求值(Lazy Evaluation)的解释、意义、案例理解、注意事项之详细攻略
DS:懒惰求值(Lazy Evaluation)的解释、意义、案例理解、注意事项之详细攻略目录懒惰求值(Lazy Evaluation)的解释、意义、案例理解、注意事项懒惰求值(Lazy Evaluation)的解释、意义、案例理解、注意事项简介懒惰求值(Lazy Evaluation)是一种计算机程序的求值策略,它延迟计算表达式的值,直到该值被需要为止。意义在懒惰求值中,表达式的值只有在必要时才会被计算,而不是在表达式被绑定或定义时立即计算。这种求值策略通原创 2023-05-06 00:07:57 · 1188 阅读 · 1 评论 -
Algorithm:【算法进阶之路】之算法面试刷题集合—数据结构知识和算法刷题及其平台、问题为导向的十大类刷题算法(数组和字符串、链表、栈和队列、二叉树、堆、图、哈希表、排序和搜索、回溯算法、枚举/递
Algorithm:【算法进阶之路】之算法面试刷题集合—数据结构知识和算法刷题及其平台、问题为导向的十大类刷题算法(数组和字符串、链表、栈和队列、二叉树、堆、图、哈希表、排序和搜索、回溯算法、枚举/递归/分治/动态规划/贪心算法)总结目录相关文章数据结构的最强学习路线之问题为导向的十大类刷题算法总结一、学习相关的讲解与刷题平台二、刷题集合三、常见的十大类考试题型相关文章DSt:数据结构的简介、最强学习路线(逻辑结构【数组原创 2023-04-22 23:36:17 · 1407 阅读 · 0 评论 -
AI之Merlin:Merlin(一款使用ChatGPT和GPT-4的简单且免费的工具)的简介、安装、使用方法之详细攻略
AI之Merlin:Merlin(一款使用ChatGPT和GPT-4的简单且免费的工具)的简介、安装、使用方法之详细攻略目录Merlin的简介(一款使用ChatGPT和GPT-4的简单且免费的工具)Merlin的安装Merlin的使用方法Merlin的简介(一款使用ChatGPT和GPT-4的简单且免费的工具) ChatGPT扩展在秒内完成任何网站上的任何任务。Merlin是使用ChatGPT的简单和更好的方法。只需点击Cmd+M,全球60多万用户信赖。Mer原创 2023-04-16 10:25:13 · 5926 阅读 · 0 评论 -
Internet:A/B Testing即对照实验(一种数据驱动决策方法/常用于产品调试)的简介、原理、案例应用之详细攻略
Internet:A/B Testing即对照实验(一种数据驱动决策方法/常用于产品调试)的简介、原理、案例应用之详细攻略目录A/B Testing即对照实验(一种数据驱动决策方法/常用于产品调试)的简介1、A/B Testing即对照实验的概述2、A/B测试与人工智能领域的关系A/B Testing即对照实验的案例应用1、网站页面设计2、电子商务3、广告4、移动应用5、游戏6、邮件营销A/B Testing即对照实验(一种数据驱动决策方原创 2023-03-26 14:22:45 · 1520 阅读 · 0 评论 -
Python编程小技巧:遍历py文件自动去掉所有注释仅剩代码函数(有部分可能导致函数代码顺序错乱)
Python编程小技巧:遍历py文件自动去掉所有注释仅剩代码函数(有部分可能导致函数代码顺序错乱)目录遍历py文件自动去掉所有注释仅剩代码函数(有部分可能导致函数代码顺序错乱)遍历py文件自动去掉所有注释仅剩代码函数(有部分可能导致函数代码顺序错乱)实现代码# 遍历py文件,去掉所有注释,有可能导致顺序错乱def drop_notes_in_py(py_path): # import sys # py_path = sys.argv # with open(p原创 2023-03-25 00:09:44 · 751 阅读 · 0 评论 -
NOSQL之Neo4j:Neo4j的简介、安装和使用方法(Neo4j搭配JDK安装的图文教程)、案例应用之详细攻略
NOSQL之Neo4j:Neo4j的简介、安装和使用方法(Neo4j搭配JDK安装的图文教程)、案例应用之详细攻略目录Neo4j的简介Neo4j的安装和使用方法Neo4j的应用案例Neo4j的简介 Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。它是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎,但是它将结构化数据存储在网络(从数学角度叫做图)上而不是表中。Neo4j也可以被看原创 2023-03-21 22:15:27 · 1495 阅读 · 0 评论 -
ML之prophet:利用prophet算法对上海最高气温实现回归预测(时间序列的趋势/周季节性趋势/年季节性趋势)案例
ML之prophet:利用prophet算法对上海最高气温实现回归预测(时间序列的趋势/周季节性趋势/年季节性趋势)案例目录利用prophet算法对上海最高气温实现回归预测(时间序列的趋势/周季节性趋势/年季节性趋势)案例# 1、定义数据集# 2、特征工程# 3、模型训练与推理利用prophet算法对上海最高气温实现回归预测(时间序列的趋势/周季节性趋势/年季节性趋势)案例# 1、定义数据集date week max_temperature min_原创 2023-03-20 20:37:36 · 1540 阅读 · 0 评论 -
Math之ARIMA:基于statsmodels库利用ARIMA算法对太阳黑子年数据(来自美国国家海洋和大气管理局)实现回归预测(ADF检验+LB检验+DW检验+ACF/PACF图)案例
Math之ARIMA:基于statsmodels库利用ARIMA算法对太阳黑子年数据(美国国家海洋和大气管理局)实现回归预测(ADF检验+LB检验+DW检验+ACF/PACF图)案例实现代码目录基于statsmodels库利用ARIMA算法对太阳黑子年数据(美国国家海洋和大气管理局)实现回归预测(ADF检验+LB检验+DW检验+ACF/PACF图)案例# 1、定义数据集# 2、特征工程# 3、模型训练与评估基于statsmodels库利用ARIMA原创 2023-03-19 16:01:24 · 1768 阅读 · 0 评论 -
Math之ARIMA:基于statsmodels库利用ARIMA算法(ADF检验+差分修正+ACF/PACF图)对上海最高气温实现回归预测案例
Math之ARIMA:基于statsmodels库利用ARIMA算法(ADF检验+差分修正+ACF/PACF图)对上海最高气温实现回归预测案例目录基于statsmodels库利用ARIMA算法对上海最高气温实现回归预测案例# 1、定义数据集# 2、特征工程# 3、模型训练与评估相关文章Math之ARIMA:基于statsmodels库利用ARIMA算法(ADF检验+差分修正+ACF/PACF图)对上海最高气温实现回归预测案例Math之ARIMA:基原创 2023-03-18 22:46:57 · 1536 阅读 · 0 评论 -
Python之pandas:利用多种方法获取dataframe格式数据的最小值、最大值、自定义分位数(如1/4分位数、3/4分位数等)之详细攻略
Python之pandas:利用多种方法获取dataframe格式数据的最小值、最大值、自定义分位数(如1/4分位数、3/4分位数等)之详细攻略目录利用多种方法获取dataframe格式数据的最小值、最大值、自定义分位数(如1/4分位数、3/4分位数等)利用多种方法获取dataframe格式数据的最小值、最大值、自定义分位数(如1/4分位数、3/4分位数等)实现代码import warningswarnings.filterwarnings('ignore')import pan原创 2023-03-14 23:49:54 · 1905 阅读 · 0 评论 -
Python:利用for循环比较两个列表元素的异同进而找出共有元素、各自不同元素并全部导出到csv文件实现代码
Python:利用for循环比较两个列表元素的异同进而找出共有元素、各自不同元素并全部导出到csv文件实现代码目录利用for循环比较两个列表元素的异同进而找出共有元素、各自不同元素并全部导出到csv文件实现代码利用for循环比较两个列表元素的异同进而找出共有元素、各自不同元素并全部导出到csv文件实现代码# 1、直接比较两个列表元素的异同# 1、直接比较两个列表元素的异同list01 = [1,2,3,4,5,6,7,8]list02 = [1,2,3,4,9]lists_P原创 2023-03-14 20:45:00 · 1223 阅读 · 0 评论