给一个n(1 ≤ n ≤ 2500) 个点 m(1 ≤ m ≤ 6200) 条边的无向图,求 s 到 t 的最短路。
输入格式:
第一行四个由空格隔开的整数 n、m、s、t。
之后的 m 行,每行三个正整数 si、ti、wi(1≤wi≤109),表示一条从si 到 ti 长度为 wi 的边。
输出格式:
一个整数,表示从s 到t 的最短路径长度。数据保证至少存在一条道路。
输入样例:
7 11 5 4
2 4 2
1 4 3
7 2 2
3 4 3
5 7 5
7 3 3
6 1 1
6 3 4
2 4 3
5 6 3
7 2 1
结尾无空行
输出样例:
7
结尾无空行
注意:
两个顶点之间可能存在多条直接相连的道路。
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f
#define max 10000
int Map[max][max];
int dis[max];
bool vis[max] = { false };
int Min;
int n, m, s, t;
void Dijkstra()
{
dis[s] = 0;
vis[s] = true;
for (int i = 0; i < n - 1; i++) { //每次求得起始点到某个v顶点的最短路径,并加到vis集
Min = INF;
for (int k = 1; k <= n; k++) {
if (!vis[k] && dis[k] < Min) {
Min = dis[k];
s = k; //以下s已经改变
}
}
vis[s] = true; //离起始点最近的点加入vis集
for (int k = 1; k <= n; k++) { //更新当前最短路径及距离
if (!vis[k] && Min + Map[s][k] < dis[k]) {
dis[k] = Min + Map[s][k];
}
}
}
}
int main()
{
int a, b, w;
cin >> n >> m >> s >> t;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
Map[i][j] = Map[j][i] = INF;
}
}
for (int i = 0; i < m; i++) {
cin >> a >> b >> w;
Map[a][b] = Map[b][a] = w;
}
for (int i = 1; i <= n; i++) {
dis[i] = Map[i][s]; //Map[i][k1]为点i到起始点的直接距离(i到k1的弧)
}
Dijkstra();
cout << dis[t] << endl;
return 0;
}