数据结构与算法A实验六图论---7-12 Dijkstra算法(模板)

给一个n(1 ≤ n ≤ 2500) 个点 m(1 ≤ m ≤ 6200) 条边的无向图,求 s 到 t 的最短路。

输入格式:

第一行四个由空格隔开的整数 n、m、s、t。

之后的 m 行,每行三个正整数 si​、ti​、wi​(1≤wi​≤109),表示一条从si​ 到 ti​ 长度为 wi​ 的边。

输出格式:

一个整数,表示从s 到t 的最短路径长度。数据保证至少存在一条道路。

输入样例:

7 11 5 4
2 4 2
1 4 3
7 2 2
3 4 3
5 7 5
7 3 3
6 1 1
6 3 4
2 4 3
5 6 3
7 2 1

结尾无空行

输出样例:

7

结尾无空行

注意:

两个顶点之间可能存在多条直接相连的道路。

#include<bits/stdc++.h>
using namespace std;

#define INF 0x3f3f3f
#define max 10000
int Map[max][max];
int dis[max];
bool vis[max] = { false };
int Min;
int n, m, s, t;

void Dijkstra()
{
	dis[s] = 0;
	vis[s] = true;
	for (int i = 0; i < n - 1; i++) { //每次求得起始点到某个v顶点的最短路径,并加到vis集
		Min = INF;
		for (int k = 1; k <= n; k++) {
			if (!vis[k] && dis[k] < Min) {
				Min = dis[k];
				s = k; //以下s已经改变
			}
		}
		vis[s] = true; //离起始点最近的点加入vis集
		for (int k = 1; k <= n; k++) { //更新当前最短路径及距离
			if (!vis[k] && Min + Map[s][k] < dis[k]) {
				dis[k] = Min + Map[s][k];
			}
		}
	}
}

int main()
{
	int a, b, w;
	cin >> n >> m >> s >> t;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			Map[i][j] = Map[j][i] = INF;
		}
	}
	for (int i = 0; i < m; i++) {
		cin >> a >> b >> w;
		Map[a][b] = Map[b][a] = w;
	}
	for (int i = 1; i <= n; i++) {
		dis[i] = Map[i][s]; //Map[i][k1]为点i到起始点的直接距离(i到k1的弧)
	}
	Dijkstra();
	cout << dis[t] << endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

趟水过河

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值