A - 数据结构实验之图论一:基于邻接矩阵的广度优先搜索遍历
Description
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
Input
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
Sample
Input
1
6 7 0
0 3
0 4
1 4
1 5
2 3
2 4
3 5
Output
0 3 4 2 5 1
Hint
以邻接矩阵作为存储结构。
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int N=1010;
int dis[N];
int vis[N][N];
int n,m,s;
int ch[N];
int top=0;
void bfs(int s)
{
int in,out;
in=out=0;
ch[in++]=s;
dis[s]=1;
while(in>out)
{
int u=ch[out];
for(int i=0;i<n;i++)
{
if(dis[i]==0&&vis[u][i]==1)
{
ch[in++]=i;
dis[i]=1;
}
}
out++;
}
for(int i=0;i<in;i++)
{
if(i==in-1)
{
printf("%d\n",ch[i]);
}
else
{
printf("%d ",ch[i]);
}
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d",&n,&m,&s);
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
memset(ch,0,sizeof(ch));
for(int i=0;i<m;i++)
{
int u,v;
scanf("%d %d",&u,&v);
vis[u][v]=vis[v][u]=1;
}
bfs(s);
}
return 0;
}
B - 数据结构实验之图论二:图的深度遍历
Description
请定一个无向图,顶点编号从0到n-1,用深度优先搜索(DFS),遍历并输出。遍历时,先遍历节点编号小的。
Input
输入第一行为整数n(0 < n < 100),表示数据的组数。 对于每组数据,第一行是两个整数k,m(0 < k < 100,0 < m < k*k),表示有m条边,k个顶点。 下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示DFS的遍历结果。
Sample
Input
1
4 4
0 1
0 2
0 3
2 3
Output
0 1 2 3
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int N=1010;
int dis[N];
int vis[N][N];
int n,m,s;
int ch[N];
int top=0;
void dfs(int s)
{
dis[s]=1;
ch[top++]=s;
for(int i=0;i<n;i++)
{
if(dis[i]==0&&vis[s][i]==1)
{
dfs(i);
}
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&n,&m);
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
memset(ch,0,sizeof(ch));
for(int i=0;i<m;i++)
{
int u,v;
scanf("%d %d",&u,&v);
vis[u][v]=vis[v][u]=1;
}
top=0;
dfs(0);
for(int i=0;i<top;i++)
{
if(i==top-1)
{
printf("%d\n",ch[i]);
}
else
{
printf("%d ",ch[i]);
}
}
}
return 0;
}
C - 数据结构实验之图论三:判断可达性
Description
在古老的魔兽传说中,有两个军团,一个叫天灾,一个叫近卫。在他们所在的地域,有n个隘口,编号为1..n,某些隘口之间是有通道连接的。其中近卫军团在1号隘口,天灾军团在n号隘口。某一天,天灾军团的领袖巫妖王决定派兵攻打近卫军团,天灾军团的部队如此庞大,甚至可以填江过河。但是巫妖王不想付出不必要的代价,他想知道在不修建任何通道的前提下,部队是否可以通过隘口及其相关通道到达近卫军团展开攻击。由于n的值比较大(n<=1000),于是巫妖王找到了擅长编程的你 =_=,请你帮他解决这个问题,否则就把你吃掉变成他的魔法。为了拯救自己,赶紧想办法吧。
Input
输入包含多组,每组格式如下。
第一行包含两个整数n,m(分别代表n个隘口,这些隘口之间有m个通道)。
下面m行每行包含两个整数a,b;表示从a出发有一条通道到达b隘口(注意:通道是单向的)。
Output
如果天灾军团可以不修建任何通道就到达1号隘口,那么输出YES,否则输出NO。
Sample
Input
2 1
1 2
2 1
2 1
Output
NO
YES
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int N=1010;
int dis[N];
int vis[N][N];
int n,m,s;
int ch[N];
int top=0;
void dfs(int s)
{
dis[s]=1;
for(int i=0;i<n;i++)
{
if(dis[i]==0&&vis[s][i]==1)
{
dfs(i);
}
}
}
int main()
{
int t;
while(~scanf("%d %d",&n,&m))
{
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
memset(ch,0,sizeof(ch));
for(int i=0;i<m;i++)
{
int u,v;
scanf("%d %d",&u,&v);
vis[u][v]=1;
}
top=0;
dfs(n);
if(dis[1]==1)
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
return 0;
}
D - 数据结构实验之图论四:迷宫探索
Description
有一个地下迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关;请问如何从某个起点开始在迷宫中点亮所有的灯并回到起点?
Input
连续T组数据输入,每组数据第一行给