SDUT--OJ《数据结构与算法》实践能力专题训练6 图论

本文介绍了多个数据结构实验中的图论问题,包括广度优先搜索遍历、深度优先搜索遍历、判断图的可达性、最短步数计算等。每个问题都详细描述了输入输出格式和样例,适合于图论和算法的学习与实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A - 数据结构实验之图论一:基于邻接矩阵的广度优先搜索遍历

Description

给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)

Input

输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。

Output

输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。

Sample

Input 

1
6 7 0
0 3
0 4
1 4
1 5
2 3
2 4
3 5

Output 

0 3 4 2 5 1

Hint

以邻接矩阵作为存储结构。

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int  N=1010;
int dis[N];
int vis[N][N];
int n,m,s;
int ch[N];
int top=0;
void bfs(int s)
{
   int in,out;
   in=out=0;
   ch[in++]=s;
   dis[s]=1;
   while(in>out)
   {
      int u=ch[out];
      for(int i=0;i<n;i++)
      {
         if(dis[i]==0&&vis[u][i]==1)
         {
            ch[in++]=i;
            dis[i]=1;
         }
      }
      out++;
   }
   for(int i=0;i<in;i++)
       {
          if(i==in-1)
          {
             printf("%d\n",ch[i]);
          }
          else
          {
             printf("%d ",ch[i]);
          }
       }
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
       scanf("%d %d %d",&n,&m,&s);
       memset(dis,0,sizeof(dis));
       memset(vis,0,sizeof(vis));
       memset(ch,0,sizeof(ch));
       for(int i=0;i<m;i++)
       {
           int u,v;
           scanf("%d %d",&u,&v);
           vis[u][v]=vis[v][u]=1;
       }
       bfs(s);
    }
    return 0;
}

 

B - 数据结构实验之图论二:图的深度遍历

Description

请定一个无向图,顶点编号从0到n-1,用深度优先搜索(DFS),遍历并输出。遍历时,先遍历节点编号小的。

Input

输入第一行为整数n(0 < n < 100),表示数据的组数。 对于每组数据,第一行是两个整数k,m(0 < k < 100,0 < m < k*k),表示有m条边,k个顶点。 下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。

Output

输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示DFS的遍历结果。

Sample

Input 

1
4 4
0 1
0 2
0 3
2 3

Output 

0 1 2 3

 

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int  N=1010;
int dis[N];
int vis[N][N];
int n,m,s;
int ch[N];
int top=0;
void dfs(int s)
{
   dis[s]=1;
   ch[top++]=s;
   for(int i=0;i<n;i++)
   {
      if(dis[i]==0&&vis[s][i]==1)
      {
         dfs(i);
      }
   }
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
       scanf("%d %d",&n,&m);
       memset(dis,0,sizeof(dis));
       memset(vis,0,sizeof(vis));
       memset(ch,0,sizeof(ch));
       for(int i=0;i<m;i++)
       {
           int u,v;
           scanf("%d %d",&u,&v);
           vis[u][v]=vis[v][u]=1;
       }
       top=0;
       dfs(0);
       for(int i=0;i<top;i++)
       {
          if(i==top-1)
          {
             printf("%d\n",ch[i]);
          }
          else
          {
             printf("%d ",ch[i]);
          }
       }
    }
    return 0;
}

 

C - 数据结构实验之图论三:判断可达性

Description

 在古老的魔兽传说中,有两个军团,一个叫天灾,一个叫近卫。在他们所在的地域,有n个隘口,编号为1..n,某些隘口之间是有通道连接的。其中近卫军团在1号隘口,天灾军团在n号隘口。某一天,天灾军团的领袖巫妖王决定派兵攻打近卫军团,天灾军团的部队如此庞大,甚至可以填江过河。但是巫妖王不想付出不必要的代价,他想知道在不修建任何通道的前提下,部队是否可以通过隘口及其相关通道到达近卫军团展开攻击。由于n的值比较大(n<=1000),于是巫妖王找到了擅长编程的你 =_=,请你帮他解决这个问题,否则就把你吃掉变成他的魔法。为了拯救自己,赶紧想办法吧。

 

Input

 输入包含多组,每组格式如下。

第一行包含两个整数n,m(分别代表n个隘口,这些隘口之间有m个通道)。

下面m行每行包含两个整数a,b;表示从a出发有一条通道到达b隘口(注意:通道是单向的)。

Output

 如果天灾军团可以不修建任何通道就到达1号隘口,那么输出YES,否则输出NO。

 

Sample

Input 

2 1
1 2
2 1
2 1

Output 

NO
YES

 

#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int  N=1010;
int dis[N];
int vis[N][N];
int n,m,s;
int ch[N];
int top=0;
void dfs(int s)
{
   dis[s]=1;
   for(int i=0;i<n;i++)
   {
      if(dis[i]==0&&vis[s][i]==1)
      {
         dfs(i);
      }
   }
}
int main()
{
    int t;

    while(~scanf("%d %d",&n,&m))
    {
       memset(dis,0,sizeof(dis));
       memset(vis,0,sizeof(vis));
       memset(ch,0,sizeof(ch));
       for(int i=0;i<m;i++)
       {
           int u,v;
           scanf("%d %d",&u,&v);
           vis[u][v]=1;
       }
       top=0;
       dfs(n);
       if(dis[1]==1)
       {
          printf("YES\n");
       }
       else
       {
          printf("NO\n");
       }
    }
    return 0;
}

D - 数据结构实验之图论四:迷宫探索

Description

有一个地下迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关;请问如何从某个起点开始在迷宫中点亮所有的灯并回到起点?

Input

连续T组数据输入,每组数据第一行给

SDUT-OJ(Software Development University of Tsinghua Online Judge)是一个在线编程平台,提供给清华大学软件学院的学生和爱好者练习和解决算法问题的环境,其中包括各种计算机科学题目,包括数据结构算法形等。对于"最小生成树"(Minimum Spanning Tree, MST)问题,它是图论中的经典问题,目标是从一个加权无向图中找到一棵包含所有顶点的树,使得树的所有边的权重之和最小。 在C语言中,最常见的是使用Prim算法或Kruskal算法来求解最小生成树。Prim算法从一个顶点开始,逐步添加当前生成树相连且权重最小的边,直到所有顶点都被包含;而Kruskal算法则是从小到大对所有边排序,每次选取没有形成环的新边加入到树中。 如果你想了解如何用C语言实现这些算法,这里简单概括一下: - 通常使用优先队列(堆)来存储边和它们的权重,以便快速查找最小值。 - 从任意一个顶点开始,遍历其相邻的边,若新边不形成环,就更新树,并将新边加入优先队列。 - Kruskal算法- 先将所有的边按照权重升序排序。 - 创建一个空的最小生成树,然后依次取出排序后的边,如果这条边连接的两个顶点不在同一个连通分量,则将其添加到树中。 如果你需要更详细的代码示例,或者有具体的问题想了解(比如如何处理环、如何实现优先队列等),请告诉我,我会为你提供相应的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值