基于出租车GPS数据的特征提取及可视化项目分析

文章通过分析出租车GPS数据,利用Hadoop进行数据处理,展示了如何通过MapReduce程序计算每小时出租车数量和车载率。结果表明,05至06时段交通繁忙,车载率与车辆数量增长显著。这些分析对于优化城市交通管理和提供交通信息服务具有重要意义。
摘要由CSDN通过智能技术生成

一、课程设计的背景和主要内容

1、课程设计的选题背景

      随着城市化的发展和城市人口的增加,现代大都市面临着严重的城市问题,如交通拥堵和不理想的城市资源规划等。近年来,随着技术的快速发展和不同的传感技术的广泛应用,大量的数据已成功收集并且记录了城市的各个方面的状态,这给解决都市问题和创建基于大城市大数据分析的智能城市带来了新的机遇。
    尤其针对出租车GPS数据的数据分析更有价值,因为出租车满足了城市中不同人群的不同需求,同时出租车上的GPS定位终端可以定期采集多种信息,包括GPS进纬度坐标,速度,出租车行驶方向,出租车载客状态等,并且采集频率较高,采集持续时间较长,用户量较大,所以出租车的GPS数据规模更大,可获取的信息更加丰富,更加详细。而GPS数据是对用户在物理实践中实现及空间的最直接的描述,所以从出租车GPS的数据中能够挖掘的信息十分丰富。

(2)课程设计的主要内容

项目的目的:

综合考虑城市交通的各个因素,帮助用户快速理解复杂城市交通状况及多元因素对城市交通的影响及作用效果,进而分析时需多元数据协同格式化结果的空间局促变化,提炼交通状况,利用出租车移动轨迹属于进一步进行分析模型参数,为交通治理手段提供证据参考,帮助相关部门对交通状况进行评估与决策与评估。

项目的意义:

一方面可以为交通信息服务系统提供重要的交通路况信息,另一方面可以为城市交通的运营管理和运营特性分析提供重要的决策依据,以推动数字城市交通的智能化改革,还可以从侧面反映出城市居民出行的特性,为进行此方面就是学者提供依据。

二、数据描述

1、数据特征的描述

COMMADDR:车辆标识,出租车车牌信息,Int类型

UTC:时间戳,GPS采样时间,Int类型

LAT:经度坐标,出租车所在纬度,Int类型

LON:纬度坐标,出租车所在经度,Int类型

HEAD:方向角,出租车行驶方向,Int类型

SPEED:车辆速度,出租车行驶速度,Int类型

TELAG:车辆状态,出租车载客状态,Int类型

filter_$:全是1,Int类型

2、数据保存到hadoop的hdfs的实现

(1)打开集群

 (2)编写代码

package org.example;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import java.net.URI;
public class HdfsTest {
   
// 声明FileSystem对象
   
private FileSystem fs;
   
/**
     *
创建对象,同时创建FileSystem对象
     */
   
public HdfsTest() {
       
// 获取classpath下面的xxx-site.xml配置文件,并解析其内容,封装到conf对象中
       
Configuration config = new Configuration();
       
// java代码对conf中的配置信息进行手动设置,会覆盖xxx-site.xml中读取的属性值
       
config.set("fs.defaultFS", "hdfs://192.168.213.70:9000");
        URI uri;
       
try {
            uri =
new

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值