2021-04-28

本文介绍了机器学习中的线性回归模型,通过简化为一元线性方程来阐述。讨论了如何确定线性模型的斜率和纵截距,提出了代价函数的概念,即平方误差函数,用于衡量预测值与实际值的偏差。通过最小化代价函数,找到最佳拟合线。1/2的系数用于梯度求导时消除2的影响,使得求解过程更简洁。文章适合初学者理解监督学习中的模型训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习——模型描述

(本篇文章能让你看到监督学习的过程是怎样的)
先上数据集:了解即可
在这里插入图片描述
在这里插入图片描述
我们的重点就是得到函数h的过程:
一开始我们将进行一元函数(线性方程),因为简单。(我具体详细更新日期看情况吧,会一点点慢慢讲的,不急,哈哈)。

机器学习——代价函数

我们暂且认为某个训练集得到的是线性函数:在这里插入图片描述
那么,怎么确定两个未知数,(为了方便理解,我叫它斜率和纵截距,方便,懂?)
在这里插入图片描述
预测值与实际值的平方的和越小,代表拟合越好,公式中的m代表样本容量,
在这里插入图片描述
观察可知,实际用的公式除以了2m,因为用平均值的概念能更好的表示拟合度,那么1/2的作用是什么呢?答案是为了梯度求导消除2。
所以,现在我们已经成功的把问题转化为了求目标函数的最小值。没错,这个公式就是代价函数。
代价函数也叫平方误差函数,有时也被称作平方误差代价函数。代价函数还有很多,但是这个是线性回归问题最常用的了

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值