机器学习——模型描述
(本篇文章能让你看到监督学习的过程是怎样的)
先上数据集:了解即可
我们的重点就是得到函数h的过程:
一开始我们将进行一元函数(线性方程),因为简单。(我具体详细更新日期看情况吧,会一点点慢慢讲的,不急,哈哈)。
机器学习——代价函数
我们暂且认为某个训练集得到的是线性函数:
那么,怎么确定两个未知数,(为了方便理解,我叫它斜率和纵截距,方便,懂?)
预测值与实际值的平方的和越小,代表拟合越好,公式中的m代表样本容量,
观察可知,实际用的公式除以了2m,因为用平均值的概念能更好的表示拟合度,那么1/2的作用是什么呢?答案是为了梯度求导消除2。
所以,现在我们已经成功的把问题转化为了求目标函数的最小值。没错,这个公式就是代价函数。
代价函数也叫平方误差函数,有时也被称作平方误差代价函数。代价函数还有很多,但是这个是线性回归问题最常用的了