2021-04-28

本文介绍了机器学习中的线性回归模型,通过简化为一元线性方程来阐述。讨论了如何确定线性模型的斜率和纵截距,提出了代价函数的概念,即平方误差函数,用于衡量预测值与实际值的偏差。通过最小化代价函数,找到最佳拟合线。1/2的系数用于梯度求导时消除2的影响,使得求解过程更简洁。文章适合初学者理解监督学习中的模型训练过程。
摘要由CSDN通过智能技术生成

机器学习——模型描述

(本篇文章能让你看到监督学习的过程是怎样的)
先上数据集:了解即可
在这里插入图片描述
在这里插入图片描述
我们的重点就是得到函数h的过程:
一开始我们将进行一元函数(线性方程),因为简单。(我具体详细更新日期看情况吧,会一点点慢慢讲的,不急,哈哈)。

机器学习——代价函数

我们暂且认为某个训练集得到的是线性函数:在这里插入图片描述
那么,怎么确定两个未知数,(为了方便理解,我叫它斜率和纵截距,方便,懂?)
在这里插入图片描述
预测值与实际值的平方的和越小,代表拟合越好,公式中的m代表样本容量,
在这里插入图片描述
观察可知,实际用的公式除以了2m,因为用平均值的概念能更好的表示拟合度,那么1/2的作用是什么呢?答案是为了梯度求导消除2。
所以,现在我们已经成功的把问题转化为了求目标函数的最小值。没错,这个公式就是代价函数。
代价函数也叫平方误差函数,有时也被称作平方误差代价函数。代价函数还有很多,但是这个是线性回归问题最常用的了

内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值