2021-04-28

本文介绍了机器学习中的线性回归模型,通过简化为一元线性方程来阐述。讨论了如何确定线性模型的斜率和纵截距,提出了代价函数的概念,即平方误差函数,用于衡量预测值与实际值的偏差。通过最小化代价函数,找到最佳拟合线。1/2的系数用于梯度求导时消除2的影响,使得求解过程更简洁。文章适合初学者理解监督学习中的模型训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习——模型描述

(本篇文章能让你看到监督学习的过程是怎样的)
先上数据集:了解即可
在这里插入图片描述
在这里插入图片描述
我们的重点就是得到函数h的过程:
一开始我们将进行一元函数(线性方程),因为简单。(我具体详细更新日期看情况吧,会一点点慢慢讲的,不急,哈哈)。

机器学习——代价函数

我们暂且认为某个训练集得到的是线性函数:在这里插入图片描述
那么,怎么确定两个未知数,(为了方便理解,我叫它斜率和纵截距,方便,懂?)
在这里插入图片描述
预测值与实际值的平方的和越小,代表拟合越好,公式中的m代表样本容量,
在这里插入图片描述
观察可知,实际用的公式除以了2m,因为用平均值的概念能更好的表示拟合度,那么1/2的作用是什么呢?答案是为了梯度求导消除2。
所以,现在我们已经成功的把问题转化为了求目标函数的最小值。没错,这个公式就是代价函数。
代价函数也叫平方误差函数,有时也被称作平方误差代价函数。代价函数还有很多,但是这个是线性回归问题最常用的了

内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值