2021-05-22

本文探讨了集成学习中的随机森林与XGBoost(强化GBDT)之间的区别,重点介绍了XGBoost在模型优化上的优势。通过Sklearn实例演示了如何使用XGBoost在Iris数据集上进行分类,并分析了关键参数对模型性能的影响。
摘要由CSDN通过智能技术生成

集成学习

在这里插入图片描述
这样分类就很明确了

随机森林

在这里插入图片描述
要得到泛化性能强的集成,集成中的个体学习器应尽可能相互独立,虽然这在现实任务中很难做到,但我们可以设法使基学习器尽可能具有较大的差异。
这样理解,对于一组数据,先设定n个组,然后有放回的随机抽取L个数据集,然后还要随机选取m个特征,放进第一个决策树(基学习器),这样便会得到一个决策结果,重复n遍,如果是回归就去均值,如果是分类问题就去取众数,类似于班内同学举手投票,少数服从多数。

代码部分在整理

GBDT

先简单理解BDT
在这里插入图片描述
GBDT
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
代码部分:
**

先看看天书。。。。。 这段代码是我抠的一位大佬的,很明显我本人没有这个能力,以后可能会深入思考,利用sklearn库的代码在后面。

**

# -*- coding: utf-8 -*-
# Random Forest Algorithm on Sonar Dataset
from random import seed
from random import randrange
from csv import reader
from math import sqrt
from math import log


# Load a CSV file
def load_csv(filename):  # 导入csv文件
    dataset = list()
    with open(filename, 'r') as file:
        csv_reader = reader(file)
        for row in csv_reader:
            if not row:
                continue
            dataset.append(row)
    return dataset


# Convert string column to float
def str_column_to_float(dataset, column):  # 将数据集的第column列转换成float形式
    for row in dataset:
        row[column] = float(row[column].strip())  # strip()返回移除字符串头尾指定的字符生成的新字符串。


# Convert string column to integer
def str_column_to_int(dataset, column):  # 将最后一列表示标签的值转换为Int类型0,1,...
    class_values = [row[column] for row in dataset]
    unique = set(class_values)
    lookup = dict()
    for i, value in enumerate(unique):
        lookup[value] = i
    for row in dataset:
        row[column] = lookup[row[column]]
    return lookup


# Split a dataset into k folds
def cross_validation_split(dataset,
                           n_folds):  # 将数据集dataset分成n_flods份,每份包含len(dataset) / n_folds个值,每个值由dataset数据集的内容随机产生,每个值被使用一次
    dataset_split = list()
    dataset_copy = list(dataset)  # 复制一份dataset,防止dataset的内容改变
    fold_size = int(len(dataset) / n_folds)
    for i in range(n_folds):
        fold = list()  # 每次循环fold清零,防止重复导入dataset_split
        while len(fold) < fold_size:  # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立
            index = randrange(len(dataset_copy))
            fold.append(dataset_copy.pop(
                index))  # 将对应索引index的内容从dataset_copy中导出,并将该内容从dataset_copy中删除。pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
        dataset_split.append(fold)
    return dataset_split  # 由dataset分割出的n_folds个数据构成的列表,为了用于交叉验证


# Calculate accuracy percentage
def accuracy_metric(actual, predicted):  # 导入实际值和预测值,计算精确度
    correct = 0
    for i in range(len(actual)):
        if actual[i] == predicted[i]:
            correct += 1
    return correct / float(len(actual)) * 100.0


# Split a dataset based on an attribute and an attribute value #根据特征和特征值分割数据集
def d_split(index, value, dataset):
    left, right = list(), list()
    for row in dataset:
        if row[index] < value:
            left.append(row)
        else:
            right.append(row)
    return left, right


# Calculate the Gini index for a split dataset
def gini_index(groups, class_values):  # 个人理解:计算代价,分类越准确,则gini越小
    gini = 0.0
    for class_value in class_values:  # class_values =[0,1]
        for group in groups:  # groups=(left,right)
            size = len(group)
            if size == 0:
                continue
            proportion = [row[-1] for row in group].count(class_value) / float(size)
            gini += (proportion * (1.0 - proportion))  # 个人理解:计算代价,分类越准确,则gini越小
    return gini


# Select the best split point for a dataset  #找出分割数据集的最优特征,得到最优的特征index,特征值row[index],以及分割完的数据groups(left,right)
def get_split(dataset, n_features):
    class_values = list(set(row[-1] for row in dataset))  # class_values =[0,1]
    b_index, b_value, b_score, b_groups = 999, 999, 999, None
    features = list()
    while len(features) < n_features:
        index = randrange(len(dataset[0]) - 1)  # 往features添加n_features个特征(n_feature等于特征数的根号),特征索引从dataset中随机取
        if index not in features:
            features.append(index)
    for index in features:  # 在n_features个特征中选出最优的特征索引,并没有遍历所有特征,从而保证了每课决策树的差异性
        for row in dataset:
            groups = d_split(index, row[index],
                             dataset)  # groups=(left,right);row[index]遍历每一行index索引下的特征值作为分类值value,找出最优的分类特征和特征值
            gini = gini_index(groups, class_values)
            if gini < b_score:
                b_index, b_value, b_score, b_groups = index, row[
                    index], gini, groups  # 最后得到最优的分类特征b_index,分类特征值b_value,分类结果b_groups。b_value为分错的代价成本。
    # print b_score
    return {'index': b_index, 'value': b_value, 'groups': b_groups}


# Create a terminal node value #输出group中出现次数较多的标签
def to_terminal(group):
    outcomes = [row[-1] for row in group]  # max()函数中,当key参数不为空时,就以key的函数对象为判断的标准;
    return max(set(outcomes), key=outcomes.count)  # 输出group中出现次数较多的标签


# Create child splits for a node or make terminal  #创建子分割器,递归分类,直到分类结束
def split(node, max_depth, min_size, n_features,
          depth):  # max_depth = 10,min_size = 1,n_features = int(sqrt(len(dataset[0])-1))
    left, right = node['groups']
    del (node['groups'])
    # check for a no split
    if not left or not right:
        node['left'] = node['right'] = to_terminal(left + right)
        return
    # check for max depth
    if depth >= max_depth:  # max_depth=10表示递归十次,若分类还未结束,则选取数据中分类标签较多的作为结果,使分类提前结束,防止过拟合
        node['left'], node['right'] = to_terminal(left), to_terminal(right)
        return
    # process left child
    if len(left) <= min_size:
        node['left'] = to_terminal(left)
    else:
        node['left'] = get_split(left,
                                 n_features)  # node['left']是一个字典,形式为{'index':b_index, 'value':b_value, 'groups':b_groups},所以node是一个多层字典
        split(node['left'], max_depth, min_size, n_features, depth + 1)  # 递归,depth+1计算递归层数
    # process right child
    if len(right) <= min_size:
        node['right'] = to_terminal(right)
    else:
        node['right'] = get_split(right, n_features)
        split(node['right'], max_depth, min_size, n_features, depth + 1)


# Build a decision tree
def build_tree(train, max_depth, min_size, n_features):
    # root = get_split(dataset, n_features)
    root = get_split(train, n_features)
    split(root, max_depth, min_size, n_features, 1)
    return root


# Make a prediction with a decision tree
def predict(node, row):  # 预测模型分类结果
    if row[node['index']] < node['value']:
        if isinstance(node['left'], dict):  # isinstance是Python中的一个内建函数。是用来判断一个对象是否是一个已知的类型。
            return predict(node['left'], row)
        else:
            return node['left']
    else:
        if isinstance(node['right'], dict):
            return predict(node['right'], row)
        else:
            return node['right']


# Make a prediction with a list of bagged trees
def bagging_predict(trees, row):
    predictions = [predict(tree, row) for tree in trees]  # 使用多个决策树trees对测试集test的第row行进行预测,再使用简单投票法判断出该行所属分类
    return max(set(predictions), key=predictions.count)


# Create a random subsample from the dataset with replacement
def subsample(dataset, ratio):  # 创建数据集的随机子样本
    sample = list()
    n_sample = round(len(dataset) * ratio)  # round() 方法返回浮点数x的四舍五入值。
    while len(sample) < n_sample:
        index = randrange(len(dataset))  # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
        sample.append(dataset[index])
    return sample


# Random Forest Algorithm
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
    trees = list()
    for i in range(n_trees):  # n_trees表示决策树的数量
        sample = subsample(train, sample_size)  # 随机采样保证了每棵决策树训练集的差异性
        tree = build_tree(sample, max_depth, min_size, n_features)  # 建立一个决策树
        trees.append(tree)
    predictions = [bagging_predict(trees, row) for row in test]
    return (predictions)


# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):  # 评估算法性能,返回模型得分
    folds = cross_validation_split(dataset, n_folds)
    scores = list()
    for fold in folds:  # 每次循环从folds从取出一个fold作为测试集,其余作为训练集,遍历整个folds,实现交叉验证
        train_set = list(folds)
        train_set.remove(fold)
        train_set = sum(train_set, [])  # 将多个fold列表组合成一个train_set列表
        test_set = list()
        for row in fold:  # fold表示从原始数据集dataset提取出来的测试集
            row_copy = list(row)
            test_set.append(row_copy)
            row_copy[-1] = None
        predicted = algorithm(train_set, test_set, *args)
        actual = [row[-1] for row in fold]
        accuracy = accuracy_metric(actual, predicted)
        scores.append(accuracy)
    return scores


# Test the random forest algorithm
seed(1)  # 每一次执行本文件时都能产生同一个随机数
# load and prepare data
filename = 'r.csv'
dataset = load_csv(filename)
# convert string attributes to integers
for i in range(0, len(dataset[0]) - 1):
    str_column_to_float(dataset, i)
# convert class column to integers
# str_column_to_int(dataset, len(dataset[0])-1)  ##将最后一列表示标签的值转换为Int类型0,1(可以不用转换,标签可以为str型)
# evaluate algorithm
n_folds = 5  # 分成5份数据,进行交叉验证
# max_depth = 10 #递归十次
max_depth = 20  # 调参(自己修改) #决策树深度不能太深,不然容易导致过拟合
min_size = 1
sample_size = 1.0
# n_features = int(sqrt(len(dataset[0])-1))
n_features = 15  # 调参(自己修改) #准确性与多样性之间的权衡
for n_trees in [1, 10, 20]:  # 理论上树是越多越好
    scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)
    print('Trees: %d' % n_trees)
    print('Scores: %s' % scores)
    print('Mean Accuracy: %.3f%%' % (sum(scores) / float(len(scores))))

文件在这:复制粘贴后放入r.csv

可以看到,直接实现GBDT模型是一件非常复杂的事情,相当的难理解,所以我们用到sklearn库来简化代码,

scikit-learn 是基于 Python 语言的机器学习工具。

简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用
建立在 NumPy ,SciPy 和 matplotlib 上
开源,可商业使用 - BSD许可证

sklearn调参过程

在sklearn中,GradientBoostingClassifier为GBDT的分类树, 而GradientBoostingRegressor为GBDT的回归类。两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同。

这些参数中,可以把重要参数分为两类,第一类是Boosting框架的重要参数,第二类是基学习器即CART回归树的重要参数。
在这里插入图片描述

先了解一下数据集

  1. load_iris数据集
    Iris数据集在模式识别研究领域应该是最知名的数据集了,有很多文章都用到这个数据集。这个数据集里一共包括150行记录,其中前四列为花萼长度,花萼宽度,花瓣长度,花瓣宽度等4个用于识别鸢尾花的属性,第5列为鸢尾花的类别(包括Setosa,Versicolour,Virginica三类)。也即通过判定花萼长度,花萼宽度,花瓣长度,花瓣宽度的尺寸大小来识别鸢尾花的类别。

完整模板:

train_X,test_X,train_y,test_y = train_test_split(train_data,train_target,test_size=0.3,random_state=5)

参数解释:

train_data:待划分样本数据

train_target:待划分样本数据的结果(标签)

test_size:测试数据占样本数据的比例,若整数则样本数量

random_state:设置随机数种子,保证每次都是同一个随机数。若为0或不填,则每次得到数据都不一样

import pandas as pd
import numpy as np
import matplotlib.pylab as plt

from sklearn.ensemble import GradientBoostingClassifier#导入梯度提升树
from sklearn import datasets
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
X,y= datasets.load_iris(True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
gbdt=GradientBoostingClassifier(n_estimators=10)

gbdt.fit(X_train,y_train)

print(gbdt.score(X_test,y_test))
`

```结果
0.9666666666666667

这就是用sklearn进行GBDT

XGBoost

说到XGBoost,不得不提GBDT(Gradient Boosting Decision Tree)。因为XGBoost本质上还是一个GBDT,但是力争把速度和效率发挥到极致,所以叫X (Extreme) GBoosted。包括前面说过,两者都是boosting方法。在这里插入图片描述
XGBoost与GBDT有什么不同
除了算法上与传统的GBDT有一些不同外,XGBoost还在工程实现上做了大量的优化。总的来说,两者之间的区别和联系可以总结成以下几个方面。

GBDT是机器学习算法,XGBoost是该算法的工程实现。
在使用CART作为基分类器时,XGBoost显式地加入了正则项来控制模 型的复杂度,有利于防止过拟合,从而提高模型的泛化能力。
GBDT在模型训练时只使用了代价函数的一阶导数信息,XGBoost对代 价函数进行二阶泰勒展开,可以同时使用一阶和二阶导数。
传统的GBDT采用CART作为基分类器,XGBoost支持多种类型的基分类 器,比如线性分类器。
传统的GBDT在每轮迭代时使用全部的数据,XGBoost则采用了与随机 森林相似的策略,支持对数据进行采样。
传统的GBDT没有设计对缺失值进行处理,XGBoost能够自动学习出缺 失值的处理策略。

import pandas as pd
import numpy as np
import matplotlib.pylab as plt

from sklearn.ensemble import GradientBoostingClassifier#导入梯度提升树
from sklearn import datasets
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
X,y= datasets.load_iris(True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
gbdt=GradientBoostingClassifier(n_estimators=10)

gbdt.fit(X_train,y_train)

print(gbdt.score(X_test,y_test))


结果:
0.9666666666666667

在这里插入图片描述
数据是我为了得出一个结果自己瞎写的,没有什么实际意义,知识让代码跑起来而已。慢慢学吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值