集成学习
这样分类就很明确了
随机森林
要得到泛化性能强的集成,集成中的个体学习器应尽可能相互独立,虽然这在现实任务中很难做到,但我们可以设法使基学习器尽可能具有较大的差异。
这样理解,对于一组数据,先设定n个组,然后有放回的随机抽取L个数据集,然后还要随机选取m个特征,放进第一个决策树(基学习器),这样便会得到一个决策结果,重复n遍,如果是回归就去均值,如果是分类问题就去取众数,类似于班内同学举手投票,少数服从多数。
代码部分在整理
GBDT
先简单理解BDT
GBDT
代码部分:
**
先看看天书。。。。。 这段代码是我抠的一位大佬的,很明显我本人没有这个能力,以后可能会深入思考,利用sklearn库的代码在后面。
**
# -*- coding: utf-8 -*-
# Random Forest Algorithm on Sonar Dataset
from random import seed
from random import randrange
from csv import reader
from math import sqrt
from math import log
# Load a CSV file
def load_csv(filename): # 导入csv文件
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(file)
for row in csv_reader:
if not row:
continue
dataset.append(row)
return dataset
# Convert string column to float
def str_column_to_float(dataset, column): # 将数据集的第column列转换成float形式
for row in dataset:
row[column] = float(row[column].strip()) # strip()返回移除字符串头尾指定的字符生成的新字符串。
# Convert string column to integer
def str_column_to_int(dataset, column): # 将最后一列表示标签的值转换为Int类型0,1,...
class_values = [row[column] for row in dataset]
unique = set(class_values)
lookup = dict()
for i, value in enumerate(unique):
lookup[value] = i
for row in dataset:
row[column] = lookup[row[column]]
return lookup
# Split a dataset into k folds
def cross_validation_split(dataset,
n_folds): # 将数据集dataset分成n_flods份,每份包含len(dataset) / n_folds个值,每个值由dataset数据集的内容随机产生,每个值被使用一次
dataset_split = list()
dataset_copy = list(dataset) # 复制一份dataset,防止dataset的内容改变
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list() # 每次循环fold清零,防止重复导入dataset_split
while len(fold) < fold_size: # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(
index)) # 将对应索引index的内容从dataset_copy中导出,并将该内容从dataset_copy中删除。pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
dataset_split.append(fold)
return dataset_split # 由dataset分割出的n_folds个数据构成的列表,为了用于交叉验证
# Calculate accuracy percentage
def accuracy_metric(actual, predicted): # 导入实际值和预测值,计算精确度
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0
# Split a dataset based on an attribute and an attribute value #根据特征和特征值分割数据集
def d_split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right
# Calculate the Gini index for a split dataset
def gini_index(groups, class_values): # 个人理解:计算代价,分类越准确,则gini越小
gini = 0.0
for class_value in class_values: # class_values =[0,1]
for group in groups: # groups=(left,right)
size = len(group)
if size == 0:
continue
proportion = [row[-1] for row in group].count(class_value) / float(size)
gini += (proportion * (1.0 - proportion)) # 个人理解:计算代价,分类越准确,则gini越小
return gini
# Select the best split point for a dataset #找出分割数据集的最优特征,得到最优的特征index,特征值row[index],以及分割完的数据groups(left,right)
def get_split(dataset, n_features):
class_values = list(set(row[-1] for row in dataset)) # class_values =[0,1]
b_index, b_value, b_score, b_groups = 999, 999, 999, None
features = list()
while len(features) < n_features:
index = randrange(len(dataset[0]) - 1) # 往features添加n_features个特征(n_feature等于特征数的根号),特征索引从dataset中随机取
if index not in features:
features.append(index)
for index in features: # 在n_features个特征中选出最优的特征索引,并没有遍历所有特征,从而保证了每课决策树的差异性
for row in dataset:
groups = d_split(index, row[index],
dataset) # groups=(left,right);row[index]遍历每一行index索引下的特征值作为分类值value,找出最优的分类特征和特征值
gini = gini_index(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[
index], gini, groups # 最后得到最优的分类特征b_index,分类特征值b_value,分类结果b_groups。b_value为分错的代价成本。
# print b_score
return {'index': b_index, 'value': b_value, 'groups': b_groups}
# Create a terminal node value #输出group中出现次数较多的标签
def to_terminal(group):
outcomes = [row[-1] for row in group] # max()函数中,当key参数不为空时,就以key的函数对象为判断的标准;
return max(set(outcomes), key=outcomes.count) # 输出group中出现次数较多的标签
# Create child splits for a node or make terminal #创建子分割器,递归分类,直到分类结束
def split(node, max_depth, min_size, n_features,
depth): # max_depth = 10,min_size = 1,n_features = int(sqrt(len(dataset[0])-1))
left, right = node['groups']
del (node['groups'])
# check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal(left + right)
return
# check for max depth
if depth >= max_depth: # max_depth=10表示递归十次,若分类还未结束,则选取数据中分类标签较多的作为结果,使分类提前结束,防止过拟合
node['left'], node['right'] = to_terminal(left), to_terminal(right)
return
# process left child
if len(left) <= min_size:
node['left'] = to_terminal(left)
else:
node['left'] = get_split(left,
n_features) # node['left']是一个字典,形式为{'index':b_index, 'value':b_value, 'groups':b_groups},所以node是一个多层字典
split(node['left'], max_depth, min_size, n_features, depth + 1) # 递归,depth+1计算递归层数
# process right child
if len(right) <= min_size:
node['right'] = to_terminal(right)
else:
node['right'] = get_split(right, n_features)
split(node['right'], max_depth, min_size, n_features, depth + 1)
# Build a decision tree
def build_tree(train, max_depth, min_size, n_features):
# root = get_split(dataset, n_features)
root = get_split(train, n_features)
split(root, max_depth, min_size, n_features, 1)
return root
# Make a prediction with a decision tree
def predict(node, row): # 预测模型分类结果
if row[node['index']] < node['value']:
if isinstance(node['left'], dict): # isinstance是Python中的一个内建函数。是用来判断一个对象是否是一个已知的类型。
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']
# Make a prediction with a list of bagged trees
def bagging_predict(trees, row):
predictions = [predict(tree, row) for tree in trees] # 使用多个决策树trees对测试集test的第row行进行预测,再使用简单投票法判断出该行所属分类
return max(set(predictions), key=predictions.count)
# Create a random subsample from the dataset with replacement
def subsample(dataset, ratio): # 创建数据集的随机子样本
sample = list()
n_sample = round(len(dataset) * ratio) # round() 方法返回浮点数x的四舍五入值。
while len(sample) < n_sample:
index = randrange(len(dataset)) # 有放回的随机采样,有一些样本被重复采样,从而在训练集中多次出现,有的则从未在训练集中出现,此则自助采样法。从而保证每棵决策树训练集的差异性
sample.append(dataset[index])
return sample
# Random Forest Algorithm
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
trees = list()
for i in range(n_trees): # n_trees表示决策树的数量
sample = subsample(train, sample_size) # 随机采样保证了每棵决策树训练集的差异性
tree = build_tree(sample, max_depth, min_size, n_features) # 建立一个决策树
trees.append(tree)
predictions = [bagging_predict(trees, row) for row in test]
return (predictions)
# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args): # 评估算法性能,返回模型得分
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds: # 每次循环从folds从取出一个fold作为测试集,其余作为训练集,遍历整个folds,实现交叉验证
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, []) # 将多个fold列表组合成一个train_set列表
test_set = list()
for row in fold: # fold表示从原始数据集dataset提取出来的测试集
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores
# Test the random forest algorithm
seed(1) # 每一次执行本文件时都能产生同一个随机数
# load and prepare data
filename = 'r.csv'
dataset = load_csv(filename)
# convert string attributes to integers
for i in range(0, len(dataset[0]) - 1):
str_column_to_float(dataset, i)
# convert class column to integers
# str_column_to_int(dataset, len(dataset[0])-1) ##将最后一列表示标签的值转换为Int类型0,1(可以不用转换,标签可以为str型)
# evaluate algorithm
n_folds = 5 # 分成5份数据,进行交叉验证
# max_depth = 10 #递归十次
max_depth = 20 # 调参(自己修改) #决策树深度不能太深,不然容易导致过拟合
min_size = 1
sample_size = 1.0
# n_features = int(sqrt(len(dataset[0])-1))
n_features = 15 # 调参(自己修改) #准确性与多样性之间的权衡
for n_trees in [1, 10, 20]: # 理论上树是越多越好
scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)
print('Trees: %d' % n_trees)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores) / float(len(scores))))
文件在这:复制粘贴后放入r.csv
可以看到,直接实现GBDT模型是一件非常复杂的事情,相当的难理解,所以我们用到sklearn库来简化代码,
scikit-learn 是基于 Python 语言的机器学习工具。
简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用
建立在 NumPy ,SciPy 和 matplotlib 上
开源,可商业使用 - BSD许可证
sklearn调参过程
在sklearn中,GradientBoostingClassifier为GBDT的分类树, 而GradientBoostingRegressor为GBDT的回归类。两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同。
这些参数中,可以把重要参数分为两类,第一类是Boosting框架的重要参数,第二类是基学习器即CART回归树的重要参数。
先了解一下数据集
-
load_iris数据集
Iris数据集在模式识别研究领域应该是最知名的数据集了,有很多文章都用到这个数据集。这个数据集里一共包括150行记录,其中前四列为花萼长度,花萼宽度,花瓣长度,花瓣宽度等4个用于识别鸢尾花的属性,第5列为鸢尾花的类别(包括Setosa,Versicolour,Virginica三类)。也即通过判定花萼长度,花萼宽度,花瓣长度,花瓣宽度的尺寸大小来识别鸢尾花的类别。
完整模板:
train_X,test_X,train_y,test_y = train_test_split(train_data,train_target,test_size=0.3,random_state=5)
参数解释:
train_data:待划分样本数据
train_target:待划分样本数据的结果(标签)
test_size:测试数据占样本数据的比例,若整数则样本数量
random_state:设置随机数种子,保证每次都是同一个随机数。若为0或不填,则每次得到数据都不一样
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from sklearn.ensemble import GradientBoostingClassifier#导入梯度提升树
from sklearn import datasets
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
X,y= datasets.load_iris(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
gbdt=GradientBoostingClassifier(n_estimators=10)
gbdt.fit(X_train,y_train)
print(gbdt.score(X_test,y_test))
`
```结果
0.9666666666666667
这就是用sklearn进行GBDT
XGBoost
说到XGBoost,不得不提GBDT(Gradient Boosting Decision Tree)。因为XGBoost本质上还是一个GBDT,但是力争把速度和效率发挥到极致,所以叫X (Extreme) GBoosted。包括前面说过,两者都是boosting方法。
XGBoost与GBDT有什么不同
除了算法上与传统的GBDT有一些不同外,XGBoost还在工程实现上做了大量的优化。总的来说,两者之间的区别和联系可以总结成以下几个方面。
GBDT是机器学习算法,XGBoost是该算法的工程实现。
在使用CART作为基分类器时,XGBoost显式地加入了正则项来控制模 型的复杂度,有利于防止过拟合,从而提高模型的泛化能力。
GBDT在模型训练时只使用了代价函数的一阶导数信息,XGBoost对代 价函数进行二阶泰勒展开,可以同时使用一阶和二阶导数。
传统的GBDT采用CART作为基分类器,XGBoost支持多种类型的基分类 器,比如线性分类器。
传统的GBDT在每轮迭代时使用全部的数据,XGBoost则采用了与随机 森林相似的策略,支持对数据进行采样。
传统的GBDT没有设计对缺失值进行处理,XGBoost能够自动学习出缺 失值的处理策略。
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from sklearn.ensemble import GradientBoostingClassifier#导入梯度提升树
from sklearn import datasets
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
X,y= datasets.load_iris(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
gbdt=GradientBoostingClassifier(n_estimators=10)
gbdt.fit(X_train,y_train)
print(gbdt.score(X_test,y_test))
结果:
0.9666666666666667
数据是我为了得出一个结果自己瞎写的,没有什么实际意义,知识让代码跑起来而已。慢慢学吧。